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ABSTRACT

Chuang, Jung-Hong. Ph.D., Purdue University, August 1990. Surface Approxi-

mations in Geometric Modeling. Major Professor: Christoph M. Hoffmann.

- One of the major research efforts in the field of solid modeling focuses on ex-

tending the geometric coverage of modeling systems and on incorporating complex

free-form surfaces. Some major obstacles to this goal include computing and rep-

resenting intersection curves of two general surfaces, and computing and rendering

very complex surfaces, including offset, Voronoi. and blending surfaces. We present

local and global approximation schemes that are expected to be of practical value

in overcoming the above problems. For parametric curves and surfaces, we present

a method for computing an implicit approxiant of low degree that approximates

the curves or surface locally and achieves an order of contact that can be prescribed

in advance. In principle, the method is capable of exact implicitization. [ Several \

surfaces, including offsets, blends, and Voronoi surfaces can be defined as the nat-

ural projections to R3 of 2-surfaces in R'. n > 3. The 2-surface in R" is the zern

set of a system of nonlinear equations in n variables. We present algorithms that

compute the normal, tangent vectors, and normal curvatures of the projected sur-

face directly from the nonlinear system without variable elimination. Methods are

presented as well that compute the explicit and parametric approximations of the

projected surface locally. Finally, for a given 2-surface in R', n > 3, an algorithm

is given that computes the piecewise linear approximation of the projected surface

globally with all major computations performed in 3-space.



1. INTRODUCTION

Solid modeling has received much attention throughout the academic and 'n-

dustrial communities for nearly three decades. Even though significant progress

has been made in basic research and in the capabilities of commercially available

solid modelers, many current solid modeling systems allow only severely geomet-

ric primitives. For example PADL, a solid modeler developed at the University

of Rochester by Requicha and Voelcker. only allows planar, spherical. cylindrical.

conical, and toroidal faces [55].

Recent solid modeling research efforts are being directed at extending the ge-

ometric coverage of solid modelers and incorporating complex free-form surfaces.

Some major obstacles to this goal have been computing and representing intersec-

tion curves of two general surfaces, and computing and rendering very complex

surfaces, including offset, Voronoi, and blending surfaces. In this thesis, local and

global approximation schemes are presented that are expected to be of practical

value in overcoming the problems of geometric coverage.

An algebrai .rface i .. e .dim.ensional space caa be given by an implicit

representation as the polynomial equation g(x, y, z) = 0. Some algebraic surfaces

can also be given parametrically as x = h1(s,t), y = h2(s, t), z = h 3(s,t), where

the hi are polynomials or ratios of polynomials. Since both representations have

their own strengths and weaknesses, many geometric computations could become

simpler or practical if both representations were available and their complemen-

tary strengths could be utilized. Thus. the problem of how to convert from one

representation to the other is of great practical importance. However. conversions

between them are not always possible. While general techniques exist for con-

verting from parametric to implicit form. by a process called implicitization based
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on classical elimination theory, e.g., [46, 47, 49, 58, 65], only a subset of implicit

curves and surfaces have a parametric representation. Moreover, the techniques

for implicitization are extremely expensive and hence their practical use is quite

limited. Since exact conversions between representations might be impossible or

impractical, local approximations in terms of parametric or implicit forms should

be valuable. We have derived several local approximation techniques for curves

and surfaces that are defined parametrically or implicitly, and expect that these

techniques will be of practical interest when they are incorporated into algorithms

for surface interrogation such as computing surface intersections [23, 24].

Offset. Voronoi, and blending surfaces can be constructed, with an algebraic for-

mulation. as the natural projection to R 3 of 2-dimensional manifolds (2-surfaces) in

a higher-dimensional space. For visualization purposes, a piecewise linear approx-

imation (PLA) of these surfaces is desirable. As a global approximation, the PLA

of parametric surfaces has been extensively studied and is a widely used tool for

rendering surfaces, as well as for evaluating surface intersections. Comparatively,

much less attention has been paid in the literature to piecewise approximations of

implicitly defined surfaces [7, 17, 571. We present new algorithms for computing

PLAs of surfaces defined implicitly by sets of equations. including offset surfaces,

Voronoi surfaces, and spherical blending surfaces.

1.1 Surface Representations in Solid Modeling

2-surfaces can be represented either in parametric or in implicit form. The

implicit representation is a' active for determining directly whether a point is on

the surface by checking whether or not it satisfies the implicit equation. For the

parametric representation. on the other hand. it is much easier to generate points

on the surface. Major parametric surfaces. includin, B~zier surfaces, and nonuni-

form rational B-splines. are attractive in interactive design because the manner
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in which coefficient changes alter the surface shape qualitatively can be grasped

intuitively. However, this is presently not the case for implicit surfaces.

1.1.1 Parametric Surfaces

The parametric representation of a 2-surface in R3 is

x = x(uv)

y = y(u,v) (1.1)

= Z(u.0)

and is the range of a map from R 2 to R 3 , where u and v are usually restricted

to a standard domain, say to the unit square [0, 1] x [0.1]. These parameter

limits define a bounded rectangular piece of surface, or a surface patch. The

functions x(u.v), y(u,v), and z(uv) customarily are polynomials or ratios of

polynomials in u and v. For the major parametric surfaces used in Computer

Aided Geometric Design (CAGD), the polynomials are represented in a particular

basis, for instance, in the Bernstein-B zier basis. This allows us to relate the

coefficients of the coordinate functions of the surface to the geometric properties

and shape of the surface, and this relationship makes parametric surfaces well-

suited to interactive design. Also, many useful techniques. including subdivision

and local shape control. have been developed and extensively applied in surface

interrogations; see, e.g., [26]. The parametric representation can be generalized to

define a 2-surface in R', for n > 3.

1.1.2 Implicit Surfaces

An algebraic surface in R 3 is defined as the zero set of an implicit equation

h(x. y.z) =0 (1.2)

whe: ? h is a polynomial in x. y. z. As mentioned before, efficient conversion be-

tween parametric and implicit representations would be of critical importance in
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geometric computations. Sederberg [61, 63] demonstrated that it is always possi-

ble to implicitize a parametric curve or surface using elimination techniques such

as resultant methods [46, 47, 49, 58]. The implicitization can also be based on

Gr~bner Basis techniques (18, 31, 33]. Both methods are fairly expensive and

hence their practical application is currently quite limited.

Parameterization or converting an implicit representation to an equivalent

parametric representation is not always possible since not all implicit surfaces can

be expressed as rational parametric surfaces. In fact, only implicit curves of genus

zero possess a rational parameterization: see [1, 2, 3, 4, 33, 64].

.. 1.3 Implicit Surfaces in High-Dimensional Space

While many surfaces can be formulated quite easily in three dimensional space,

as parametric or implicit surfaces, certain surfaces including offsets, Voronoi sur-

faces(equidistance surfaces), and spherical blk 3 can not. Due to the possibility

of high algebraic degrees, many geometric operations on such surfaces can lead

to high computational complexity and numerical instability, and may require ex-

pensive symbolic manipulations. As an alternative, Hoffmann proposed in [30. 31]

a surface representation that is defined in a higher dimensional space, with more

variables but simpler equations. With this representation, complex symbolic com-

putations and numerically delicate operations can often be avoided, and hence

practical implementations can be realized.

In the following, we give the formulation of offset and Voronoi surfaces in high

dimensional space.

Offset Surfaces As described in [30], the r-offset of the surface g(x,y,z) = 0 is

the set of points

Offset(g,r) { pI d(g,p) = r}

where d(g, p) is the Euclidean distance of the point p from the surface g = 0. The

offset surface in general has two sheets in real affine space and can be defined



5

mathematically applying the envelope theorem as follows:

(X-u)2+(y - v) 2 + (z - w) 2 r 0

g(u,v,w) = 0 (1.3)
(x-u,y-V,z-w).t = 0

(x-u,y-v,z-w).t2 = 0

where (u, v, w) is the footpoint, and t, and t 2 are two linearly independent tangent

directions of g = 0 to which the direction vector (x - u, y - v, z - w) must be

perpendicular. For example, with t, = (gm, 0, -g.) and t 2 = (0, g, -gj), we

obtain

g.(x - u) - gu(z - W) = 0

g.(y - v) - g.(z - w) = 0

Its closed-form can be obtained in principle by eliminating u, v, and w using re-

sultant techniques (13, 46, 611 or Gr~bner basis methods [18, 19]. When g,, = 0.

(gw, 0, -g.) and (0,g,, -g,,) become linearly dependent and hence there will be

an extraneous factor representing spheres on g = 0 fl g, = 0 in its closed-form

representation. To eliminate this extraneous factor, we may adjoin

g.(y - v) - gu(x - U) = 0

to system (1.3). Moreover, the presence of singularities also introduces additional

extraneous factors. Thus, the formulation in (1.3) is not faithful in the sense that

the natural projection of the solution set of the system contains points that are

not on the offset surface: see [32]. The -offset formulation (1.3) is a system of four

equations with degrees as high as g's while its closed-form in (x, y, z)-space has a

much higher degree. For example, when g is a quadric, the closed-form of its offset

may have degree 8. The computation of the intersection of the offset with other

surfaces is reported in [31, 30]. Below. we define the offset of an ellipsoid as an

example.

Example 1.1 Consider an ellipsoid g(xy,z) = 4x 2 + y2 + z2 - 4 = 0 which is

centered at the origin and has semiaxes 1.2. and 2. respectively. The offset of
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g = 0 by the distance 2 is formulated as

(x-u) 2 +(y-v)2 +(z-w)2 -4 = 0

4u 2 +v 2 +w 2-4 = 0 (1.4)
w(x-u)-4u(z-w) = 0

w(y-v)-v(z-w) = 0

When w = 0, (w,0, -4u) and (0,w, -v) become linearly dependent. Hence the

closed-form of the offset of g in (x,y, z)-space reveals an extraneous factor z and

has degree 9. 0

Voronoi Surfaces The Voronoi surface of two given surfaces g(x, y, z) = 0 and

h(x, y, z) = 0, denoted as Vor(g, h), is the locus of points equidistant from g and

h. It is formally defined by

Vor(g, h)= { p E R3 I d(g,p) = d(h,p)}

The Voronoi surface proves useful in defining constant-radius blends [32], variable-

radius blends [21, 30], and skeletons (medial-axis surfaces) of an object [25]. As

shown in [30], we define the Vor(g, h) as the common points of the offsets from

both g and h by an identical but unspecified distance r. Thus, Vor(g, h) can be

formulated as eight equations in ten variables

(x- u)' + (y- u)' + (z- w) 2 - r 2 = 0

g(u,V,w) = 0

(x - u,y - v.z - w) t1 = 0

(x - u,y - V- -w)t2 = 0
(1.5)

(X--i)2 + (y _ &)2 + (Z_ tD) 2 - r 2 = 0

gkuD,) = 0

(z - ,y - .: - ). = 0

(X - [ -,. -V).t2 = 0

where (u.v.w) and (fL,&.zb) are footpoints on g and h respectively, and (t 1 ,t2)

and (tl. t1 ) are two linearly independent tangent directions to g and h respectively.
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By eliminating the variables u. v, W, ii. &, twp, and r, the closed-form of the Voronoi

surface Vor(g, h) can be obtained in principle.

The closed-form of Vor(g, h) consists of two components, one is called the even

Voronoi surface of g and h and the other is the odd Voronoi surface of g and h. The

even Voronoi surface is the points that are either inside both g and h or outside

both of them. The odd Voronoi surface consists of points that are inside one and

outside the other basis surface. Both components arise when we cannot distinguish

positive and negative offests. Notice that the elimination methods used to compute

the closed-form of (1.5) cannot distinguish between even and odd Voronoi surfaces

and hence the closed-form must be the union of two surfaces. Since Vor(g, h) is

defined based on offset formulations, its closed-form may reveal extraneous factors

which may be eliminated by adding additional equations: see [32]. To illustrate

the above formulation, we give the following example.

Example 1.2 Let g = x 2+(z -2) 2 - 1 and h = y2 +(z +2)2 _1 be two cylinders of

unit radius. Let r be the common radius of the spheres centering on g and h, and

(x, y, z) be a point equidistant from g and h at (u, v, w) and (i, D, z) respectively.

At (u,v,w) on g = 0, tj = (0, 1,0) and t2 = (-(w - 2),0,u) are two linearly

independent tangent vectors. At (ii,, . t) on h = 0, two linearly independent

tangents are t1 = (1,0,0) and t 2 = (0.-(v + 2), 5). We then have the following

system of eight equations representing Vor(g, h)

(x-u) 2 +(y- t, )2 +(z-w) 2 -r 2  = 0

IL + (w - 2)2 - 1 = 0

u(z- w) +(2- w)(x t) = 0

V 0 
(1.6)

(x -a)2+ - --- '- = 0

": i-,2)1 -  1 = 0

= 0

T 0



After eliminating u, v, w, u, v, i, r from (1.6). we obtain

(x 2 _ y _8z)(48z 2 + 16y 2 z - 16x 2z + y 2x 2 y2  8y 2 + x' - 8x 2 -48)

where the first factor is the even Voronoi surface of g and h and the second one

is the odd Voronoi surface. Note that the extraneous factors do not appear in the

closed-form of Vor(g, h) due to the existence of two linearly independent tangents

at every point of the cylinders. M

Blending Surfaces Given two surfaces g(x, y, z) = 0 and h(x, y, z) = 0. a blend-

ing surface is a surface that intersects both surfaces tangentially along two curves.

A constant-radius blend is a blending surface that has circular cross-sections of

fixed radius. A variable-radius blend is a blend whose circular cross-sections are

of variable radius. A constant-radius blend of g and h can be formulated as the

envelope of the family of spheres of constant radius r whose centers are constrained

to lie on Offset(g, r) n Offset(h, r). Formalized in algebraic terms, it is the zero set

of ten equations in twelve variables; see [301. A variable-radius blend of g and h

is the envelope of the family of spheres that have centers lying on Vor(g, h) nl p,

where p is a reference surface, and have radii such that each sphere touches both

g and h: see also (21, 30].

When the basis surface of the offset is in parametric form

X = x(u,v), y = Y(u, V., Z = z(u, v)

the algebraic formulation results in 3 equations in 5 variables as follows

(X -X(u,v)) 2 + (y - y(u, v) 2 + (z - z(u.v))2 - r' = 0

(X- (u,v),Y-y(u,v),z-z(uv))'(x,(u.v).y,,(u.v),z,,(uv)) = 0 (1.7)

(x - x(u.v),y - y(uv),z - z(uv)) (X,4.L'.v),g (u.t'),z,(uv)) = 0

where the subscripts denote partial differentiation. For Voronoi surfaces and blends

involving parametric basis surfaces. the formulation is closely analogous to offsets.
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This algebraic formulation of offsets, Voronoi surfaces and blends results in 2-

surfaces in R. n > 3, which are generally defined as the zero sct of the following

system of polynomial equations:

fl(x1 ,x 2I .  , ) = 0

f 2 (x 1 ,x 2 , x,) = 0 : (1.8)

fm,(X1, X2, . X) = 0

where fi E K[x,X 2,.. x,] and m n -2) is normally n -2. We denote

system (1.8) in matrix form as F(x) = 0 and the zero set of F(x) = 0 as SF.

Recall that extra equations are sometimes required in order to eliminate extraneous

factors introduced by linearly dependent tangent vectors in the offset formulation

as shown, e.g., in (1.3). In the rest of the thesis, we assume m = n - 2. For the

cases of m > n - 2 the modifications needed in the proposed computations are

routine. It is worth remarking that the algebraic formulation of offsets, blends,

and Voronoi surfaces given here all have the property that a 2-surface is defined

in R , where n > 3, but its projection into a certain subspace is wanted. In this

thesis, we assume that the (XI,x2, X3)-space is this subspace.

In principle, from system (1.8), the last n - 3 variables of x can be eliminated.

This computation reduces F(x) = 0 to a single equation

f(XI,x 2,x 3) = 0 (1.9)

in (xI,x 2,x 3 )-space with its zero set denoted as Sf. However, the elimination

process is not practical. Hence the closed-form representation of F(x) = 0 in

(X1 ,x 2, x 3 )-space, f(xI,x 2, x 3) = 0, is often unobtainable in practice. In general

S1 is the natural projection of SF. Note that Sf might contain more points than

the natural projection of SF since the projection of SF need not be an algebraic

variety: see [69].
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1.2 Implicit Approximations of Parametric Curves and Surfaces

A recurring operation in solid modeling is the evaluation of surface intersections

[55]. If both surfaces are given parametrically, the two major approaches given the

greatest prominence in the literature are subdivision and substitution methods.

In the subdivision method, e.g., [38. 40, 41. 42, 53], both surfaces are recursively

subdivided in the vicinity of their intersection. The subdivision results in an

adaptive piecewise linear approximation of both surfaces and their intersection.

Among the advantages of the method we mention its robustness and its potential

for locating all intersection branches. A major drawback of the subdivision method

is the large volume of data it creates. which slows it down in areas of high surface

curvature.

In the substitution method, e.g, [27, 44, 59, 67, 6S], one of the surfaces, S1 , is

converted to implicit form F, and the parametric form of S2 is substituted into F

resulting in an implicit algebraic curve f in the parameter space of S2 . This curve

f is in birational correspondence with the intersection of S and S 2 in xyz-space,

and thus serves as an accurate representation of the intersection. Major difficul-

ties of the substitution method limit its utility in practice. There are two general

methods for implicitizing a parametric surface. The first method is based on elim-

ination theory [61] and does resultant computations. It is expensive and generates

extraneous factors whose detection is a delicate problem, see also Section 2.3. The

second method for implicitization is based on Gr~bner basis techniques [18]. It is

.so fairly expensive and requires, moreover, rational coefficients in the description

of S1. Another difficulty with the substitution method. less prominently pointed

out but well-known [51], is that the substitution itself can be numerically unstable.

and is a nontrivial algorithmic task when desiring efficiency and accuracy. Some

authors have suggested the use of rational arithmetic for this reason [2S1, thus

further adding to the computational load of ,!L aproach.
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In Chapter 2, we provide a middle ground by deriving a local implicit approx-

imation of rational or polynomial parametric curves and surfaces with low-degree

implicit forms. In the context of subdivision techniques, such approximations have

the potential of reducing the number of generated surface approximants, because

we are not restricted to linear approximants only. In the context of substitution

methods, the approximations avoid the high cost of implicitizing a parametric

curve or surface, and provide, moreover, irreducible approximants.

Since the distribution of a preliminary version of [23], a number of related

investigations have been developing and applying similar ideas. Bajaj and Ihm [15]

apply a technique that is analogous to ours to the problem of designing blending

surfaces and prove results on minimum degree blends satisfying certain constraints.

Previously, local explicit approximations to integral parametric curves and sur-

faces have been proposed in [48]. An approximant of the form

= f(x,y) = aixy' or y = f(x) = a'

is constructed, for surfaces and curves. Recurrence formulas were also derived for

the coefficients of f. Bajaj [11] extends this method using power series compo-

sition and inversion techniques together with rational Pad6 approximations. In

our experience, a local explicit approximation is less favorable than a local im-

plicit approximation. In fact, while a quadratic explicit approximation to a curve

achieves second order contact at the point at which it is constructed, a quadratic

implicit approximation achieves fourth order contact. For curves, the order of

contact grows linearly with the degree of the explicit approximation, whereas the

order of contact of the implicit approximation has a quadratic growth in the de-

gree. Thus, much lower degree approximations suffice. Note, however, that for an

implicit approximation of degree n. O(n) coefficients can be chosen, whereas for a

degree n explicit approximation only O(n) coefficient are available.

In general. local explicit approximation can only approximate curves or sur-

faces locally no matter how high a degree of approximant is used. This is due
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to the asymmetry introduced by making one variable an explicit function of the

other(s). For instance, a circle cannot be completely approximated with a single

explicit approximant. In contrast, our approximants are capable of approximating

curves or surfaces not only locally but also globally in the sense that the radius of

convergence increases when the degree of approximation increases, and the exact

implicitization can be finally derived when the degree of approximation is equal to

the degree of the given parametric curve or surface.

For a properly parameterized rational curve r(t), e.g., [60, 621, of degree m

containing the origin, we seek an implicit curve g(x, y) = 0 of degree n < m that

approximates r(t) at the origin. The idea is to set up the polynomial g(x, y) with

symbolic coefficients eij and substitute r(t) into g(x, y) with result

g(r(t)) =

where the ai are linear combinations of the eij. We require that a certain number

of the ai vanish. With one of the coefficients being set to one and

a,=0, a 2 =O, ... , as=O

for some s the eli are determined and an implicit approximation is obtained that

has contact of order s with r(t) at the origin.

We have derived a recurrence for computing the ai directly from r(t) without

explicit substitutions and shown that, when n < m,

" the coefficient matrix of a 1 , a 2 .... , Cfnrhas rank that is equal to the number

of unknown coefficients in g(x, y).

" the degree n local implicit approximation g(x, y) of r(t) at the origin is irre-

ducible when the origin is a regular curve point.

The method derived here has the following merits compared to local explicit

approximations proposed in [48, 11]:
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* It. works for polynomially and rationally parameterized curves and surfaces.

* It yields meaningful results for many types of singularity.

e The order of contact grows quadratically for curves and faster than linear for

surfaces.

* The implicit approximants approximate curves and surfaces not only locally

but also globally.

The algorithm for computing the implicit approximation of a properly parameter-

ized rational surface is basically similar to the one for the curve case except that

in the surface case additional safeguards are incorporated to ensure irreducibility.

1.3 Local Approximations of 2-D Surfaces

As described in Section 1.1.3, certain surfaces, including offset, blending and

Voronoi surfaces, cannot be easily defined in the conventional 3-D space. In con-

trast, these surfaces can be formulated mathematically, with the theory of en-

velopes, in higher dimensional space in a straightforward manner. As the result.

such surfaces are generally 2-dimensional surfaces in R', n > 3, and are defined

by (1.S) or in a matrix form F(x) = 0. Although the exact closed-form representa-

tion of such a surface f(xi, x2, x 3) = 0 could be derived in principle by elimination

methods such as G~bner basis [18, 19] or resultant techniques [46, 61, 13], it is

often not feasible to do so due to the high complexity of these methods. Thus.

as mentioned in [32], the viable approaches to interrogating such surfaces seem to

be (a) approximate the surface locally and interrogate the approximant. or (b) in-

terrogate the higher-dimensional representation. In Chapter 3, we have developed

computational schemes for the local geometry of f(xI, x 2 , x 3 ) = 0 and have investi-

gated techniques that construct implicit approximants. explicit approximants. and

parametric approximants to the surface in (xI, X2, x 3)-space described by a system
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of algebraic equations (1.8). These approximants have the forms X3 = iv(x 1 ,x 2 ),

and (xi = (P(S, t),x 2 = 0 2(s, t), X3 = 0 3 (s, t)), respectively.

Since f is unknown and its derivation is often impractical, methods of comput-

ing the normal, tangent, and normal curvatures of f = 0 at a surface point in R 3

from the information depending only on system (1.8) have been developed. More-

over, using a variant of the Three Tangent Theorem given by Pegna and Wolter

[52], a method has been developed for computing a degree two local implicit ap-

proximant of f = 0.

The implicit function theorem ensures that system (1.8) determines m = n -'2

components of x = (xi,..., x,) as functions of the remaining 2 components in a

neighborhood of any surface point xu on which the differential DF(x) has rank

n - 2. The unknown coefficients of explicit functions can be calculated by means

of the chain rule and a linear system solver; however, it is algebraically tedious to

do so. When we assume that x' is the origin, a recursive formula has been derived

which presents the computation in a more convenient manner. Thus, the recursive

formula computes, without loss of generality, xi = w,(xI,x 2 ), i = 3,. n. It is

clear that X3 = W3(xl, X2) is a local explicit approximation of f = 0.

For a given system (1.S) and a regular point x0 on it. there exists a neighbor-

hood of x 0 in which the parametrically defined solution x, = o,(u. v), i = 1.2,..... n.

can be found such that x0 = (oQ(0.0),....o,(0,0)). The first three coordi-

nate functions (0 1 (u, V), 0 2 (u, v), 0 3 (u, v)) so computed constitute therefore a local

parametrization of f = 0. To compute the parametric solution, we substitute

symbolically xi with 0,(u, v), i = 1....n, in all polynomials fri = 1. n -2.

Then we compute the Taylor expansion of the resulting polynomials in u and v.

By requiring that the coefficient of ujvk is identically zero for 1 < j + k < 1, a

series of linear systems are obtained. The solutions of the linear systems define

a degree I approximation of the parametrically defined solution. The first three
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component functions xi = 0 1 (u,v).z 2 = o 2(uv),X3 = 0 3 (U,V) so obtained com-

prise the degree I parametric approximant of f = 0. This derivation is analogous

to the derivation of approximants of space curve proposed in (14].

1.4 Piecewise Linear Approximations of 2-D Surfaces

With the availability of piecewise linear approximations of surfaces, certain

computations become practical; in particular, surface rendering can take advantage

of hardware capabilities and we do not have to resort to expensive ray casting

for visualization purposes. Based on subdivision, the PLA of major parametric

surfaces in CAGD. including Bernstein-B~zier surface and B-spline surfaces, have

been extensively studied and used with great success in surface interrogations

[10, 16. 38, 41, 421. However, it seems that much less research has been done in

the literature to the PLA of implicitly defined surfaces [17, 9, 7, S, 56, 57. 121.

Bloomenthal [17] has proposed an algorithm for computing PLA of an implicit

surface g(x, y, z) = 0 based on space subdivision using octrees. The algorithm

starts with an octree that bounds the surface portion of interest, and then decom-

poses recursively those octrees that intersects the surface until the surface portion

inside the octree is sufficiently close to a plane. The surface function is evaluated

at the corners of an octree cube, and from these values is determined the point

at which the surface intersects an edge of the cube, by linear interpolation. The

surface points on the edges of each cube are ordered to form a convex polygon

each of whose edges lies in a cube face. One disadvantage of the vertex evaluation

strategy is that the negatively signed corners of a cube cannot be separated from

the positively signed corners by a single plane in all cases. Thus. vertex evaluation

on a cube may result in ambiguities that could produce more than one polygo-

nal approximation. In this case. further subdivision is usually required but does

not necessarily resolve the ambiguity. Due to the nature of space decomposition.
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this approach is capable of approximating all the surface components provided the

initial cube has been properly situated.

In [9, 7, S, 6], a simplicial continuation algorithm is presented for obtaining a

PLA to a component of an implicitly defined 2-surface in R'. The algorithm starts

at a regular surface point x0 and generates n-simpfices in a sequential ordering

which spiral outward from x° . The approximate zero points on the (n - 2)-faces

of each n-simplex are computed by an affine map and can be further refined using

Newton iteration. Note that a n-simplex (7 = [v0, vi,. .... v,,] is the set of points

in R ' that is the convex combination of vo, vi.. v,. A n-simplex a is said to

be transversal if, roughly speaking, there exists an (n - 2)-face with which the

2-surface intersects transversely. The standard vector labeling of v E R' induced

bv F

IF(v) = F(v)

is used to formally define transversalitya- :" 'li-,xs. An (n-2)-face [vo, v...v,-2

is said to be completely labeled with respect to the vector labeling IF if the labeling

matrix

A 1

F(vo) F(v,_ 2)

has a lexicographically positive inverse i.e.. the first nonzero element in each row

of A' is positive. An n-simplex a is transversal if there exists an (n - 2)-face

r C a which is completely labeled with respect to the vector labeling IF.

For a n-simplex, the affine map H, : R ' - R 2 is a linear map which

interpolates F(x) on the vertices of a, i.e.. H,(v,) = F(v,) for i = 0. 1. n.

When a is transversal a n H;1(0) serves as an approximation to the 2-surface

inside a.

Let T represent the collection of il transversal simplices in a compact domain

and the piecewise linear approximation HT of F(x) ,elative to T be defined as H,
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when restricted to a for every a E T. Then,

H-'(0) = { H'(0) I ET}

is the PLA of the surface component that contains x". Newton iteration can be

used to refine points on HT'(O) to surface points. An error bound for IIF(x)JJ,

where x E HTr1(0), in terms of the mesh size is provided and it is shown thaL

H-1(0) approximates F-'(0) quadratically in the mesh size [51.

While Bloomenthal's method is more suited to implicit surfaces in R3 , the

simplicial continuation method is designed for general 2-surfaces in R ' . However,

the direct application of these methods to computing PLA of offsets, Voronoi

surfaces, and blends will have a space and time complexity that is exponential in

the dimensionality of the space.

Rheinboldt [56, 57] has presented a continuation method that maps a ref-rence

triangulation E on R P to a p-manifold Al in R', n > p _ 1, and hence produces a

triangulation on M. The method consists of two major computation schemes. A

moving frame algorithm is given to derive orthonormal bases, i.e. local coordinate

systems of the tangent space T,(M), that vary continuously with their point of

contact x on M. A triangulation algorithm uses the orthonormal bases produced

by the moving frame algorithm to map the vertices of the reference triangulation

onto the tangent space x + T,(M) corresponding to appropriate points x on M.

Thereafter, Gauss-Newton iteration is applied to project these triangulations from

x + Tr(M) onto M. At each step of the triangulation algorithm, a reference vertex

of the reference triangulation E and the corresponding point x E M are selected.

The center is associated with a set Y( ) of vertices of ' that can be mapped

onto Al. Then the reference vertices in [(c) that have not been processed are

mapped onto x +Tr(,IM) and projected onto .\f by the Gauss-Newton iteration. To

proceed, a reference vertex in F(") that has been processed is selected as the next

and the same computation is apphoi. Vi e points computed on M! inherit the

connectivity structure of E which in ;: :.:,ices a triangulation on .11. Note that
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the triangulations induced by two overlapped F( 1 ) and F( 2 ) are made compatible

by demanding that the reference vertices in n() fl(, 2) are processed only once.

In Chapter 4, we propose an algorithm that is capable of computing PLA for

2-surfaces projected into R3 but defined algebraically in R", n > 3.

1.5 Some Preliminaries

A rational plane curve r(t) can be given as the pair (x(t), y(t)), where x(t) and

y(t) are rational functions of t. The curve points are all points (x(t). y(t)) on the

plane. The curve is properly parameterized if for all but finitely many curve points

p we have p = (x(t),y(t)) with a unique value of t. When a parametric curve is

not properly parameterized, there exists a rational nonlinear function s(t) such

that x(t) = x*(s(t)) and y(t) = y*(s(t)) for some rational functions x" and y". We

assume in this thesis that all parametric curves are properly parameterized and

note that a parametric curve is always irreducible. For methods to detect improper

parameterization, see Sederberg (621.

The degree of a rational parametric curve is the highest degree of the numerator

or the denominator polynomial, assuming both x(t) and y(t) have been written

with a common denominator. The implicit equation f(x, y) of the rational curve

r(t) is a lowest degree polynomial in x and y satisfying f(x(t),y(t)) =0 . It is

unique un to a multiplicative constant. If r(t) has degree m, then so does f(x. y);

see, e.g., [46, 491.

As with parametric curves, a parametric surface

P(s. t) = (X(s. t), y(s, t), z(s. t))

can be improperly parameterized if there are nonlinear rational functions u(s, t)

and v(s, t) such that

P(s. t) = (x'(u(s.t), V(s,t)),y'(u (.s.tN. 1"(s.t)),z'(u(s.t),v(s't)))
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for some x, y" and z*. In that case, there is a many-to-one correspondence be-

tween the parameter values and the surface points. P(s, t) is properly parame-

terized if this correspondence is one-to-one except, possibly, on a one dimensional

set of points. We also assume that all parametric surfaces are properly parame-

terized. For a parametric surface described by rational functions of total degrees

m, there always exists an irreducible implicit equation f(x, y, z) = 0 satisfying

f(x(s, t), y(s, t), z(s, t)) = 0, and f is unique within a constant factor, see. e.g.,

(22]. Moreover, f has degree at most m 2.

A polyromial of degree k in the variables x1 , x2 , ... , x, is denoted fk(x1, ..., x,)

whenever we wish to stress the degree. The gradient of f = 0 at the point

x = (xI, x 2, ... x, ) is the vector Vf = (fri,fx 2,.. . , f=), where the partials are

evaluated at x. The Hessian of f is the symmetric matrix

f ... f IZ2 ... f X"

f-2X1  f X ... 2z

where subscripts denote partial differential.

A point x' = (x,.., x) is said to be non-singular or regular on f if the

gradient of f at x0 is not null, otherwise the point is singular.

Given a system of algebraic equations (1.S), the m x n matrix

DF( x0) -X O

is called the differential of F at x - (x°,..., x'). A point x' is said to be non-

singular or regular on the 2-surface F if DF(x) has rank n - 2. That is. the

gradients Vf1 , .. . , Vf, form a normal space of dimension n - 2. When m = n - 2,

this is equivalent to saying that x' is non-singular on all fi, i = 1. 2..... n - 2.

and the gradients Tf1 ,.... Vf, are linearly independent. xO is singular if it is not

a non-singular point.
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1.6 Thesis Organization

In this first chapter, various types of surface encountered in CAGD and solid

modeling, including parametric surfaces, implicit surfaces, and 2-surfaces in high-

dimensional space, have been presented. and the problems of approximating curves

and surfaces and their applications to surface interrogations have been discussed.

Moreover, several local and global approximation techniques that will be proposed

in this thesis have been sketched.

In Chapter 2, a method for computing implicit approximations to parametric

curves or surfaces is proposed that might circumvent the difficulty of globally im-

plicitizing parametric curves or surfaces. Chapter 3 deals with the local geometry

and local approximations of 2-surface in high-dimensional space. In Chapter 4, an

algorithm is developed for computing the piecewise linear approximation of offsets,

Voronoi surfaces, and blends. Chapter 5 provides a summary of this research and

comments on some future research directions.
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2. IMPLICIT APPROXIMATION OF CURVES AND SURFACES

A method is described for finding an implicit approximant to a parametric

curve or surface in a neighborhood of a point. The method works for both poly-

nomially and rationally parameterized curves and surfaces, and achieves an order

of contact that can be prescribed. In the case of nonsingular curve points, the ap-

proximant must be irreducible, but in the surface case additional safeguards have

been incorporated into the algorithm to ensure irreducibility. The method also

yields meaningful results for many types of singularity. The chapter is organized

as follows. In Section 2.1, we describe the method for polynomially and rationally

parameterized curves. Section 2.2 presents the surface case. In Section 2.3. we

comment briefly on some theoretical connections between the method we propose

here and several resultant formulations found in the literature.

2.1 Local Implicit Approximation of Parametric Plane Curves

We seek an implicit curve g(x, y) = 0 that approximates the parametric curve

r(t) = (x(t), y(t)) at the origin subject to a prescribed order of contact. The idea is

to set up a polynomial g(x, y) of sufficiently high degree with symbolic coefficients

eij. Then, a system of linear equations with unknowns eii is formulated and solved.

The linear system is obtained by substituting r(t) into g(x, y). The result is

g(x(t),y(t)) = Ea xkt k

where the ak are linear combinations of the e,1 . We require that a certain number

of the af vanish. With

l= 0. .2 = 0.......==0
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for some s. an implicit approximation is obtained that has contact of order s with

r(t) at the origin. The approach depends on the following details:

1. There is a recurrence for deriving the linear system directly from r(t) without

explicit substitutions. This recurrence is derived in Section 2.1.1.

2. Assume that the degree n of the approximation is smaller than m, the degree

of r(t). There is a function V(n) that determines the order of contact that

g(x, y) can achieve. This function is obtained by analyzing the rank of the

linear system in Section 2.1.2.

In Section 2.1.3 we discuss the error behavior of the impiicit approximation. and.

in Section 2.1.4, we present several experiments.

Let

r(t) = (x(t), y(t)) p(t) ,q(t)
W(t) w(t)

be a properly parameterized rational curve of degree m containing the origin, where

p(t) = _at', q(t) = Z bit', w(t) = c,t'
t=1 i=0

We assume that a, and b, are not both zero, and that co # 0. From (61, 63], we

mnow that there exists an irreducible polynomial f'(x. y) = 0 of degree m such

,hat

f m (X(t).y(t)) 0

Let g'(xy) = n eijx'yJ = 0 be a degree n implicit curve containing the

origin. Since gn(X,y) = 0 and 7g'(x,y) = 0, where - # 0. are the same curve.

, (x. y) = 0 has ;(n) = (n 2 + 3n - 2)/2 coefficients on which the curve depends.

Let G"(x.y, z) be the homogeneous form of g"(X,y). Substitution vields

gp(t) q(t) G t).q(t),w(t))

where the a, are linear combinations of the e,
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We look for an implicit form gn(x, y) = 0 of degree n < m approximating r(t)

at the origin, and the method of deriving should work whether w(t) - 1 or not. i.e..

irrespective whether the curve is parameterized polynomially or rationally. The

following simple example demonstrates the approach.

Example 2.1 Consider co(t) = (x(t), y(t)) = (p(t)/w(t), q(t)/w(t)), where p(t) =

2t 3 + t2 - 3t, q(t) = - t 2 - 2t, and w(t) = t2 + 4t + 5. co(t) is a properly

parameterized plane curve containing the origin. Let g2(X, y) = eoz-+eoly+e 2 oX2 +

eluxy + e02y2 be a degree 2 curve containing the origin with symbolic coefficients.

Substituting x(t) and y(t) into g2 yields g2 (x(t), y(t)) =rvt t )/(w(t))2 where

a, = -15elo - 10eo

a 2 = -7eio - 13eol + 9e 20 + 6el + 4eo2

C3 = 1lelo -eol - 6e 2o + ell + 4eo2

a 4 = 9elo + 3eol - lie 2o - Sell - 3eo2

a = 2eo + eo, + 4e2o - ell - 2eo2

a6 = 4e2o + 2e1l + e0 2

By requiring elo - I = 0- al = 0, a-2 = 0, Q3 = 0, and ,4 = 0, we can solve for

the unknown coefficients eij. The resulting g2 approximates co at the origin with

contact of order four.

2.1.1 A Recurrence for ak

Since gn'(x,y) = g- I(x,y) + ,+j=n eijx'y j , the homogeneous form of gn(x.y)

can be written as

G"(x.y,z) = zG"-'(x.y,z) + . e,1x'YJ (2.1)

In the following, let an - ' and an denote the coefficient of tk in G"-(p(t), q(t). w( O)

and G"(p(t).q(t), w(t)), respectively. It is clear that a" can be derived from the

= 1.2..... k, because of (2.1).
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We define (a(i)), and (b(j)), as in [48], setting

n im(P(t))' = Ealt')' = F_.(,aC)),t'
1=1 1=i

and similarly,
'n t 

j M r

(q(t))' = (E bit') j - (b(j)),t'
1=! 1=j

A recurrence to compute the (a(i)), and (b(j)), is derived as follows, see also (48].

By definition of (a(i + 1))j, it follows that

(a(i + 1))x' = ( (a(i))jtj (:akt)

= (a(i)jaktj+'
2---- k=1

Settingl=j+k andp=)j yields i < p < im and 1 <l-p=k < rm, and

(t+1)m (s+1 )M 1-11: (a(?'+ 1))l /= J- (a(z))pat-p tj

l---i(P=s /
Thus, equating coefficients yields the recurrence

1-1
(a(i + 1)), = j(a(i))p,_-

P=1

Recurrence for (b(j)j is analogous.

From (2.1), we therefore obtain

m( n-i1)

ak = coefficient of tk in (w(t) ce'-'t' + 1 eij(p(t)l(q(t))J)
J~l i+3. -n

k= Z: Q -C , + Z e ,,(a(i))p(b(j))q

j=1 i+tjf lp+q=k

In particular, a' = eloak + eolbk.

For an integral parametric curve r(t), a straightforward computation shows

that the a" specialize to

Cn- I
SII <k<n-l

Cn __ n 0 I

kr; k +j=n. ,p+q=ket,(a(i))p(b(j))q n < k < (n - 1)m

.1 =n, p,+q= e(a())p(b(j))q (n - 1)m < I < nm
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2.1.2 Derivation of the Method

2.1.2.1 Rank of the Linear System

Having explained how to obtain the an, we now show that the coefficient matrix

of the linear system defined by setting a, = 0, k = 1,2, ... , m, has rank at least

p(n). We are able to determine a nontrivial solution to unknown coefficients by

setting one of the coefficient to 1 and solving the system a' = 0, an = 0, ... , a = 0

for s > p(n) chosen such that the rank is p(n).

Let en = (el0, e0 1 , e 20 , elt, eo2 .. e,0, e(,l-1) I,..., el (n-1), eon,)T be the vector

of unknowns, and write the system of equations a1' = 0. m' = 0 = 0 in

matrix form:

Arnen = 0 (2.2)

Note that A,,n is a nm by ((n) + 1 matrix. Furthermore, the maximum rank of

Amn is p(n) + I since in > n and nm > ,(n) + 1. Example 3.2 shows matrix A 32

symbolically.

Example 2.2 For m = 3 and n = 2. A 32 is

aico btco 0 0 0
aic1 + anco b1c, + bco a0  alb, b1

alc2 + ac 1 + a3co b ±.c2 + b3c0  2ata 2  alb. + abj 2bbb7

aIc3+a.)c2 +a 3Ct bIc 3 +b2c 2 +b 3c I 2ata3+a2 alb3 +a .b2 +a36b 2btb 3 +b_

a2c3 + a3c2  b c3 + b3C2  2a2a3 a2b3 + a3b2  2b.b3

a 3c3  b3c3  a2 a3b3 b2

When computing the local implicit approximation g' (, y) of r(t), if the rank

of A,,, is at least p(n) then we can select one coefficient of g"(x, y) to be I and

determine the others by selecting the first s rows of (2.2) and choosing s such that

the system has rank ,;(n)
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Let f '(z, y) = 0 be the exact irreducible implicit form of r(t) with Fm (x, y, z)

as its corresponding homogeneous form. and let f', n < m, be the degree n inz-

tial segment of f" with its corresponding homogeneous form Fn(x, y,z), that is.

f"m (x, y) = f"(x, y)+terms with degree > n. Also, let F_ b,t' Fn(p(t), q(t), w(t))

and 6m, (b1, b2 , ... , bn)T.

Lemma 2.1

1. fn(x, y) is the zero polynomial if and only if bn = 0.

2. If f n(x, y) is a nonzero polynomial then 61 = [2 = = b= 0 and b,, 7- 0.

Proof: part 1: "=" trivial. "=" Suppose f'f(x,y) is a nonzero polynomial. since

bn = 0.
p(t) q(t)' ,q(t),w(t)) =0= (w(t))T hf' ( w(t)',w(t) )

for all t and then , (p(t)/w(t), q(t)/w(t)) = 0. for all t with possibly finitely many

exceptions. where w(t) = 0. Thus fn(x,y) with n < m also represents r(t) which

contra,'icts the irreducibility of f m (x, y).

part 2: Since f m (x,y) = 0 is the implicit form of r(t),

fm(p(t) q(t)) -o
w(t)' w(t)

for all t except finitely many t where w(t) = 0. Thus

F m (p(t), q(t), w(t)) = (WL(t))mfmQ Lt)- q~{t)= 0
W(t) w(t)

for all t. From
rnl

F'(p(t), q(t), w(t)) + Z e 1j(p(t))'(q(t))j(w(t))'' -  = 0
i+j=n+l

for every t, we have

nm rn n

=1 t +==n+l =n+l
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for every t. By comparison, we have b, = b2 = = = 0. The rest of part 2

follows from part 1. 0

Since f'(x, y) is an initial segment of f m (z, y), it could be either a zero polyno-

mial or a nonzero polynomial with zero or nonzero br, vectors respectively. If 6,

is known beforehand, the coefficient vector en of fn(X, y) is uniquely determined

by Amnen = bmn which is an overdetermined linear system. Note that, for a fixed

n, the elements of the matrix An depend only on the coefficients of p(t), q(t), and

w(t). The following results characterize the rank of An.

Lemma 2.2 If r(t) is a properly parameterized rational plane curve of degree m

then for n < m, we have

rank(An) = o(n) + 1

Proof: Suppose, knowing b,,, we want to determine the coefficients of f'n(x y) by

solving the overdetermined linear system Amnen = bmni where en is the coefficient

vector of the general degree n polynomial. Since Amn depends on the coefficients

of r(t), we consider the following two cases.

First, if r(t) is a curve such that the corresponding fn(x,y) is the zero poly-

nomial, then bn,,, = 0 and A,,,e,, = 0 is a homogeneous system. If rank(A,,,) <

,;(n) + 1. there will be infinitely many nontrivial solutions as well as the triv-

ial solution for this linear system. This cannot be true by Lemma 2.1. Thus

rank(A,n) = v(n) + 1.

Second. if r(t) is a curve such that the corresponding f'(xy) is a nonzero

polynomial, then b,,,, 5 0 and A,,,e,, = b,, is a consistent non-homogeneous

system since there is always a solution, that is with eij the coefficients of f (x,y).

Suppose rank(A,,,) < ,(n)+ 1. this system will have infinitely many solutions. Let

e', be one of the infinitely many solutions and e, # e,, where e, is the coefficient

vector of f'(xy). Let also h(x. w ;e the corresponding polynomial of e*, and

h '(x.y) h' (x.y) "'r' ,f' ' :1/ wth degree > n
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Let H'(x, y, z) and H"(x, y, z) be the homogeneous polynomials of h m (x, y) and

hn(x, y) respectively. Since Anen = A,,e* -= bmn,

H"(p(t), q(t), w(t)) = Fn(p(t), q(t), w(t))

for every t, and thus

H"n(p(t),q(t),w(t)) = F(p(t),q(t),w(t)) = 0

for all t. We then have

p(t) W(t) ?1(t) W(t)

for all but finitely many t. Hence f'(x.y) and h(x,y) represent the same alge-

braic curve. Since f n(X,y) 76 h"(x,y), f'(x.y) and h(xy) differ by more than

a constant factor which contradicts that the equation of an irreducible curve is

unique to within a constant factor. Therefore rank(An) must be O(n) + 1. U

Lemma 2.3 If r(t) is a properly parameterized rational plane curve of degree m

then for n = rn. we have

rank(A,,) = ,;(m)

Proof: If n = m, fmn(p(t)/w(t),q(t)/w(t)) = 0 for all t except finitely many t where

w(t) = 0. and then Fn(p(t), q(t),w t)) = 0 for all t. we thus have A.ie. = 0

which is an overdetermined linear homogeneous system. Since we will have only

trivial solution if rank(A,,) = ;(rn) + 1. rank(Am,,) must be less than or equal

to ;(mr .

Suppose r = rank(Amm) < (m), then the solution space of the overdeter-

mined homogeneous system has as basis p = ;(m) + 1 - r linearly independent

vectors and every solution of this system is the linear combination of these p solu-

tions. Now suppose that r < ;(m), then the system has a solution space spanned

by p > 2 linearly independent vectors, say e, e, e. Let f '(x, y) be the
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corresponding polynomial with coefficient vector e' and F(x, y, z) be the homo-

geneous form of f(x, y), i = 1, 2 .... p. Since

F7m(p(t), q(t), w(t)) 0 = (w(t)) m f:'( p(t) , q(t))

W(t) w(t)

for all t, 1 < i < p, we have fj'(p(t)/w(t), q(t)/w(t)) = 0 for all t with finitely many

exceptions where w(t) = 0, 1 < i < p. Thus the irreducible curve f -(x, y) = 0

can be represented by f:(x, y), i = 1,2.. p, which are not different within only

a constant factor because e,, e, , eP are linearly independent. By the above

arguments, we can conclude that rank(A,m) = ;(m).

By assigning one variable to be 1, the existence of a nontrivial solution of

Ammem = 0 is guaranteed by Lemma 2.3. and it is the coefficient vector of the

exact implicitization of r(t).

Observe that Lemmas 2.2 and 2.3 are not valid for improperly parameterized

rational plane curves, as shown in the following example:

Example 2.3 Let c1(t) = (x(t),y(t)) = (t2 + 2t, t4 + 4t 3 + 6t 2 + 4t). Since x(t) =

s(t) and y(t) = (s(t))2, where s(t) = t2 + 2, cl(t) is improperly parameterized. For

n = 2 the rank of A 42 is 4 whereas c(2) + 1 is 5.

We summarize the lemmas above in the following

Theorem 2.1 If r(t) is a properly parameterized rational plane curve of degree m

then

rank(Amn) J (n)+ I ifn < m

(;(n) if n =m

where n is the degree of the approximant. ;(n) = (n 2 + 3n - 2)/2 is the number of

coefficients on which the approximant depends.

2.1.2.2 The Algorithm

Because of Theorem 2.1. we may compute the degree n local implicit approxi-

mation as follows:
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Let

Be, = 0 (2.3)

be the subsystem of (2.2) consisting of the first s equations of Amnen = 0 such

that B has rank p(n). If the origin is not a singular curve point, then augment the

system (2.3) with an equation e01 = 1 or el0 = 1 according to whether x'(0) # 0

or y'(0) # 0. If the origin is a singular curve point, on the other hand. then (2.3)

is augmented by the equation eii = 1 where the indices i and j are selected by

inspecting the system. In this way, a linear system

Ce, = b (2.4)

is obtained that has a nontrivial solution for e,. Since c = 0, a' = 0. a,=0

the curve gn so defined must have contact of degree at least s to r(t) at the origin.

There may be cases in which the system (2.4) is inconsistent, i.e., the augmented

matrix [C, b] is of rank p(n) +2 while C has rank p(n) + 1. In this case, the linear

system can be modified to ensure consistency. For instance, when computing g:2

of c2 (t) = (t, #9), a. should be removed from, and a12 = 0 should be added to the

system (2.4), resulting in e0, - 1 = 0, a = 0, a2 = 0,.... a2 = O.aQo = 0, a2 = 0.

In this way a g2(X.y) = y is obtained, an approximation that has eighth order of

contact and is irreducible.

2.1.2.3 Irreducibility of Implicit Approximations

When the origin is a regular curve point we show that the implicit approxima-

tion g"(x, y) of r(t) at the origin is irreducible whenever the linear system (2.4) is

consistent. Note that the local implicit approximations of different degrees derived

have the same linear terms if the equations augmented to (2.3) are the same. In

the following lemmas, we assume that (2. 11 s a consistent system. Also. let s(n)

be the order of contact made by the degree ' ::inikcit approximation g'(x. y).
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Lemma 2.4 If g"(x,y) and gn-'(x,y) of r(t) at the nonsingular point (0,0) are

computed by augmenting the system (2.3) the same a = 0, where a = 0 is either

elo - I = 0 or eo- 1 = 0, then we have s(n - 1) < s(n).

Proof: Let 4"(x.y) = i(g'(x,y)+gn-l(x, y)). Suppose s(n- 1) > s(n), the 4"(Xy)

so defined has the following four properties: (1) §' is of degree n. (2) §n 6 g' .(3)

4" has the same linear terms as gn since g' and g" 1 have the identical linear terms.

(4) §" has the order of contact larger than or equal to s(n) since s(n - 1) > s(n)

is assumed. From properties 1, 3, and 4, the coefficients of §" satisfy the linear

system that is used to compute the coefficients of g ; but property 2 contradicts

the uniqueness of solution of a nonsingular linear system. Thus s(n - 1) < s(n). a

By induction and Lemma 2.4. we can show that s(n) is strictly monotone.

Lemma 2.5 At the nonsingular point (0.0), the degree n local implicit approx-

imation g"(x,y) of the degree m > n properly parameterized parametric curve

r(t) = (x(t), y(t)) is irreducible.

Proof. Suppose gn(x,y) is reducible, and g = gkg, where n = k + I and k.l >

0. Since g" contains linear terms, one of the gk and gi must have a constant

term. Let gk(xy) = ,=iPijY J, where pio and Pol are not both zero, and

g'(x,y) = E' ,=oqijx'y', where q00 4 0. Let also that g"(x(t),y(t)) = ,

gk(x(t). y(t)) = Z~h, fit', and gl(x(t), y(t)) = E,-=2!t', where %Yo = qoo. We thus

have
nn mk "'I

The coefficients of g (x, y) are computed by solving the nonsingular system as (2.4)

for some s > p(n). Mforeover, s(n), the order of contact of g' , is greater than or

equal to s. Thus the coefficients of g' satisfy the linear system a = 0, a' = 0, a'=

0 ..... .. ) = 0. where, without loss of generality, we assume that a = eto - 1 = 0.
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The above linear system can be represented in terms of 3i and -y as follows:

qoopio = 1

qoodi = 0

qoo32 + 3
1-y1 = 0

qoo33 + .3 2Yl + k3 02 = 0

qOOd3,(.) +/3,(,,)-IzY + - + A31Ys(,)-l = 0

which implies qooplo = 1 and 3 = = =,(,) = 0. Thus gk has either order

of contact larger than or equal to s(n) if s(n) < km, or gk(x(t), y(t)) = 0 for all t

if s(n) > km. The first result contradicts the fact t'.at s(n) is strictly monotone.

and the second contradicts the irreducibility of the exact implicitization of r(t).

Thus gn is irreducible. M

When the origin is a singular curve point, the implicit approximation is not

always irreducible. For example, the degree n implicit approximation of c3 (t) =

(t 2 ,t 5 ), with implicit form x' - = 0. is y' = 0. Note that y = 0 is the curve

tangent at the origin.

2.1.3 Error Analysis

2.1.3.1 Quality of the Approximation

Given c, let T(e, n) > 0 be such that for all [tl < T(, n) the orthogonal distance

d(t. n) between point (x(t), y(t)) and the degree n approximation gn(x, y) = 0 is less

than E, assuming that (x(t), y(t)) is a regular curve point for all It[ < T(E, n). The

distance d(tP, n) from a point P = (xp, yp) = (x(t.), y(tp)) on the curve r(t) to the

degree n approximation g'(x, y) = 0 is the solution of a difficult nonlinear system.

A reasonable estimate of d(tp, n) would be the distance to the g"(x, y) = 0 in a

direction orthogonal to the level curve gn(x.y) = c. where c = gn(xp, yp), denoted

by d'(tp, n). Note that d'(t, n) > d(t, n) since d(t, n) is the shortest distance from

the point to the curve. Let P' = (xp,y'p) be the point on g'(xy) = 0 on which
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g"(x,y) = 0 intersects the line orthogonal to level curve g"(x.y) = c at P. see

Figure 2.1. The value of gn at P' expressed as its Taylor series about P is

g(x, y,) = g"(x,, yr) + d'(tp, n) . Vg'(xp, yP) + higher order terms

Taking the linear term, since gn(x,, yp) = 0. d(tp, n) can be approximated by

d 7"(tn) where

a",(tP, n) _ n'( XP, yr,) = '(x(tP), y(tP))

I(Vg2(xP,, y,)II [(g.(x(t,), y(tp))) 2 + (gn(x(t,),y(t,)))2 ]1/

Note that d"(t, n) may be less than, greater than, or equal to d(t,n) although

d'(t,rn) is always greater or equal to d(t, n).

We have found no method for computing T(e, n) analytically. However, in

practice we only need a method of obtaining a reasonably good estimate of T(f, n).

Thus it is desirable to determine T'(E.n), for given e and n, such that d"(t,n) < E

for tI < (e, n).

Since 2ab < al + b2 for any positive a and b, we have / Ia b <-- 2 -V-'-

so that
d" (t, n) < d(t, n) 1g(~) ~)

Ign(X(t), y(t))I + Ign xtyt)

When tracing r(t), we can detect the first value of t such that d(t, n) < f and

d(t + At. n) > e. where At is the step distance tor t.

2.1.3.2 Curve Translation to the Origin

In the derivation of the approximant we assume that r(0) = (0,0), i.e. we

require that r(t) be translated to the origin and reparameterized. Since this may

incur additional inaccuracies we comment on it now.

Translation of r(t) to the origin is a simple operation that incurs only small

errors. For, with p = (u, v) as the curve point to be brought to the origin. the

translated curve is simply

x1 (t) = x(t) - it= p(t) - 11w(t))/w(t)

y1(t) =y(t) - v' = q(t) - tew(t))1w(t)
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/ ~ gg(xXy)y)

Figure 2.1 Error estimate

So, we have to subtract two polynomials in order to bring p to the origin.

Now assume that r(t0) = p, and consider reparameterization such that p not

only is moved to the origin but that also to -" 0, for the reparameterized curve.

Here we need to substitute t + to for t, i.e.

X()= XT to)
2(t) = Y1 (Y + to)

is the final curve. As observed in the introduction, although substitution is con-

ceptually simpleF it nonetheless may introduce numerical errors that could be sig-

nificant. According to experiments by Prakash and Patrikalakis [54], Kahan's

method described in [391 exhibits good numerical stability and offers one method

of implementing the needed reparameterization.

A second method would be to avoid reparameterization altogether by reformu-

lating the derivation of the approximant given before. That is. we consider r 

containing the origin at which t is not necessarily 0. seeking again an implicit ap-

proximant at the origin. Clearly this is possible and reqiires only straightforward
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modifications of our method. In fact, even translation of the point to the origin

can be avoided by such modifications. The details are routine.

2.1.4 Experiments

A good local approximation of a curve will provide a more accurate local

approximation and larger interval T(e,n) of approximation. for a given 1, when

the degree n of the approximation increases. The local implicit approximation

g"(X, y) = 0 of r(t) is determined by p(n) linear conditions imposed on its coeffi-

cients, where p(n) is the degree of freedom of g'(z., y). Thus, as n increases, more

conditions can be satisfied and finally the exact implicitization is obtained when

n = m. Hence our local implicit approximation is capable of approximating a given

curve not only locally but also globally in the sense that T(E,n), for a given E, will

be larger when n increases. On the other hand, a local explicit approximation is

limited due to the asymmetry introduced by making one variable an explicit func-

tion of the other. Thus, an local explicit approximation can only approximates the

given curve locally for lxi < R, where R is its radius of convergence, no matter

how high the degree of approximant is.

We give as example the approximation of several parametric curves that are

not singular at the origin, showing both implicit and explicit approximations.

Example 2.4 Four curve examples are shown below.

c 4 (t) = (t 6 + t5 -2t
3 + 3t 2 + 12t , t6 - t5 + t4 - 4t3 -2t 2 + 24t)

cs(t) = (3t 6 - 4t0 - 8t3 + 6t0 + 3t, -3t6 + 4t0 + 5t4 - 6t3 
- Stl + 3t)

c6(t) = (3t 6 + t5 -2t 4 +3S t 3 
- t2 - 14t, t 6 

- 12t -2t 4 +2t 3 
- 7t 2 + 13t)

c1 (t) = ((t 6 +3t-6t4 +4t 3 -36t' +36t)/w(t), (3t 6 +t 5 -2t 4+39t 3 -69t 2 +33t)/w(t))

where w(t) = 7t 6 + 10t5 + 9t4 + 6t2 + 3t + 7.

The curves of c4(t), c(t), c6 (t) and c7 (t) with t in [-1, 1), and their lo-

cal implicit approximations and local explicit approximation are shown in Fig-

ures 2.2. 2.3. 2.4 and 2.5. Note the Lood quality of local implicit approximation.
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Tables 2.1 2.2 and 2.3. for c4(t),c 5(t) and cj(t) respectively, list the y-values of a

sequence of x-values to quantify how accurately the low degree local implicit forms

approximate the original curves. The corresponding values of local explicit forms

are also listed for comparison. For such examples. we observe that

(a) For local implicit approximation, d(t,n+k) < d(t.n) for t in [-1, 1] and k > 1.

In addition, T(E,n) < T(e,n + k) for k > 1.

(b) T(e, 2) of local implicit approximation is greater than T(e, 6) of local explicit

approximation.

(c) Degree 2 and 3 local implicit approximations give very accurate approximations

on a reasonable range of t.

(d) Degree 5 local implicit approximation approximates the original curve very

precisely at least for -I < t < 1.

When computing an explicit approximation y = h(x) directly from the curve r(t),

we first compute the degree n power series t = FU1 djx from x = x(t), and then

substitute it for t in y = y(t). As a result. only the first n coefficients of h(s)

are exact and the remaining coefficients obtained in the computation should be

discarded. Moreover. substituting t = E', d,x' for t in y = y(t) is not a cheap

computation, especially for high degree local explicit approximations. Hence. the

computation of a local explicit approximations of a parametric curve directly from

r(t) is more costly than the implicit form. In general, the computation of local

implicit approximation involves generating the ac' and solving the linear system.

which is fairly efficient for low-degree approximation.

The local explicit approximation is an analytic function that does not exist at

a curve singularity. In contrast. a local implicit approximation always exists.

Example 2.5 Local implicit approximations can be derived at singularities. in-

cluding cusps. where local explicit approximation fails. Let c3(t) = (5t 3 + 2t'. t4 -

3t+2t2 ) with the implicit form f'(x.y) = -. r'+ -55x- +6S3xy+ 1325xy -i-625y'-

3:36x- -- (72.y - :3,6y-. "ihe origin is a cusp of c, t) with tangent x - y= 0 The
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degree 6 curve with t ,
Label i earee i lccal implicit approximazlon

abl degree iL:zcal explicj- approxaio

Figaure 2.2 Cutrve c,( t
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5.0 y

c~t) degree 6 curve.

Laibel i degree i local implicit approximacion.

Label i*: degree i local. expliit anpoximation.

-. x

2 3

4,4

4- 1

Figure 2.3 Curve c5 (t)
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ct) degree 6 curve with L -Jn
Label i degree i 1-cai impliicit approximnation.
Label i*: degree i locai explicit approximnation.

2ZZy

.4-

Figure 2.4 Curve C6 (t)
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degree 6 ciarve wi.th n"-- 1 2.0 y

Label i egree i local I.nlii aproxiation.

-2.C x

22

Figure 2.5 Curve C7 (t)
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degree 2 local implicit approximation is a double line (x - y) 2, which is the best

degree 2 approximation one can derive at cusp. The degree 3 local implicit approx-

imation is 9 - 2xy+y 2 -0.16259766x9 - 2.0356445X2y - 3 .9 40918xy 2 - 1.8 60 8 398y 3

which shows very nice approximation to the cs(t) with t in [-1, 1], see Figure 2.6.

As a next example, we consider c9(t) = ((5 0 - 16t 4 + 1Ot 3 +4t 2 )/w(t), (t 5 + t4 +2t 3 -

16t 2)/w(t)), where w(t) = O.lt 3 + O.1t 2 - 2t + 12.5. The c9(t) is a singular curve

with a cusp at the origin and a self-intersection as well, as showu in Figure 2.7.

Figure 2.8 shows the degree 3 and degree 4 local implicit approximations of c9 (t).

The degree 4 local implicit approximation shows remarkable performance. 0

2.2 Local Implicit Approximation of Parametric Surfaces

We derive an implicit surface g(x, y, z) = 0 that approximates the parametric

surface P(s, t) = (z(s, t), y(s, t), z(s, t)) at the origin to a specified order of contact.

using the method of Section 2.1. Let

P(s, t) = (x(s, t), y(s, t), Z(s, t)) p(s, t) q(s, t) r(s, t)w(s, t) ' w(s, t)' w(s, t)

be a rational parametric surface of total degree m containing the origin, where

m rm

p(s,t) = E ai1st. q(s,t) = E b,st j ,

1+j=1 S+j=j

r(s,t) = ci st w(s, t) = dj,,st j

i~j~li+j=O

with ai,, bi,, cij, i+j = m, not all zeros and doo $ 0. It has been shown by Macaulay

[461 that a parametric surface of the above form has an irreducible implicit iorm

f(x. y, z) = 0 of degree d < m2 .

Let g (x. y, z) = ~+1+k=l eijkXIY~zk, n < in. with symbolic coefficients e,.k

be a general implicit form of degree n surface that contains the origin. Since

g'(x. y, z) = 0 is unique up to a constant factor, it has degrees of freedom p(n) -

((n + 1)(n + 2)(n + :3))/6 - 2.
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Figure 2.6 Curve cs(t)
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c(t) degree 5 rational curve.

'he origin is a cusp and a self-intersection point.

Label i degree Ilocal implicit approximation.

Figure 2. 7 Curve c9(t)
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c~t) degree 5 rationai curve.
The Ori.gin is a cusp and a seif-intersection DoInt.
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Figure 2.S Curve cjit)
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When substituting x(s, t), y(s, t) and z(s, t) into g"(x, y, z), we obtain

G" (p(s, t), q(s, t), r(s. t), w(s, t)) __ , I aijs~tjgXS , (,0 ZS )=(w(S, t))" (W(S, t))"

where Gn (x, y, z, w) is the homogeneous form of g"(X, y, z), and the aij are linear

combinations of eijk. The local implicit approximation g'(x, y, z) of the parametric

surface P(s, t) is computed as in the case of the curve approximation. The following

section shows a recursive derivation of aij that obviates the need to explicitly

substitute.

2.2.1 A Recurrence for aij

Let G'n(x,y, z, w) and Gn- I(x, y, z, w) denote the homogeneous polynomials of

gn(x, y, z) and g- I(x,y, z), respectively. Since

gn(X,Y~z) = gn-'(X,y, Z) + Z e,1 kCx Y j
t+j+k=n

we have

Gn(xy,z,w) = wG'-(x,y,z,w) + eijkXiy'z (2.5)
i.'lj..k=n

We define (a(k))ij, (b(k))i3 and (c(k))i, by setting

rn kr

(p(S, t))k=( , aj 1st )k = Z (a(k))js'tJ

and similarly for
km

(q(s, t))k= (b(k))ijs't
i+j=k

and
km

(r(s,t))k = (c(k))jjs'tj
i-I-,=k

Since
km /(k-flmn
E (a(k)),&tY = (a(k - I))Pt q p(s, t)

1+)=-k (p+q=k-I
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as shown in [48], the (a(k))1, is recursively defined as

1 ifk = i = =0
0 ifk=0andi+J> 1

aij ifk = 1 and i+j >1

£-k-i<p+q<i+-iz(a(k - I))ma(,-p)(,q) if k > 2 and i + j _ k

(b(k))ij and (c(k))ii are defined analogously.

Recursive derivations for (a(k))ij, (b(k))i, and (c(k))ij can be found in [48].

Let a!' and a!7 1 be the coefficient of s't2 in G'(p(s, t), q(s, t), r(s, t), w(s, t)) and

G- I(p(s, t), q(s, t), r(s, t), w(s, t)), respectively. From (2.3), a7, can be derived
from the a'7, where 1 < k < i and I < I < j, as shown in the following formula:

m(n-)

,= coefficient of s't J in (w(s, t) s
i+j=1

+ z ekk1 k3 (P(St))k(q(s,t))k2(r(s,t))k3)

k1 +k 2 +k 3 =n

a" 12 (-- 11 )(3-t2)

11=1 12=1

+ Z, E eklk~k3 (a(kl ))piq, (b(k2)),q 2,(c(k 3) )PMq
kl+k 2+k 3 =n PI+P2+P3=1

q +q2+q3--J

Note that a,= e1 0aj + eo1obij + eoolCi .

For an integral parametric surface P(s, t), since (a(k))i, = 0,(b(k))ij = 0 and

(c(k))ij - 0 for i + j < k and a!' =0 for i + j > (n - 1)m, we have

for < i + j< n -1,

an = a-I
ij =

for n < i +j < (n - 1)m.

an = an- +k k(~i), bk,),,(~

kl+k 2 +kl n p+p2-p3=1

'l +q2+q3=)
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for (n - 1)m < i + j < nm,

kl +k 2 +k 3 =n P-+p2 +P3=i
91 +q2+q3=3

2.2.2 Derivation of the Method

2.2.2.1 Rank of the Linear System

Having derived an, i+j 1,2,. .. , nm. for the degree n implicit approximation

9'(x, y, z), we write the system of linear equations ao = 0, an = 0, an

0. an = 0. a, 2 = 0 -0. anm. 0n.....a 0a
(n(n -) - O(nm) -

0 in matrix form

Amnen = 0 (2.6)

where en = (el 0o, e0 oo, eoo, e200 , e110, ejoi, eo2o, eou, eo2,..... eoon) r is the vector of

unknowns. An so defined is of dimension ((nm+ 1 )(nm+2))/2-1 by p(n)+1, and

has rank at most p(n) + 1. As in the curve case, the rank of Am,, is critical when

solving for the unknown coefficients eik. The following theorem characterizes the

rank of A,,.

Theorem 2.2 If P(s, t) is a properly parameterized rational surface of total degree

m. then

rank(A,,,) p(n) + I if n < d

p(n) if n = d

where d (:i m2) is the degree of the implicit form of P(s, t), n is the degree of the

approzimant, and p(n) is the degree of freedom of the approximant.

Proof. Similar to proofs of Lemma 2.2 and Lemma 2.3.

As a result of Theorem 2.2, it is clear that the exact implicitization of P(s, t)

is the solution of Ame, = 0. with one variable ;et to a fixed value.
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We compute the degree n implicit approximation g"(x, y, z) as follows: Let

Be, = 0 (2.7)

be the subsystem of (2.6) that consists of the first s equation of (2.6) such that B

has rank p(n). Augment the system (2.7) with a = 0, where a is determined as

follows: if the origin is a regular surface point, a is eioo - 1, eolo - 1, or eool - I

depending on the gradient of the surface at the origin. If the origin is a singular

surface point, then a = eilk - I where the indices i,j, and k are selected by

inspection. Thus, a linear system

Ce, = b (2.S)

is obtained. System (2.8) may be an inconsistent system. If this happens, some

equations must be removed from (2.8) to ensure the consistency.

One alternative for handling inconsistencies is that we replace a = 0 in (2.8)

with eoo - 1 = 0, eono - I = 0, or e0o, - 1 = 0 and then solve it as usual. Examples

show that gf'(x, y, z) computed by this method can be of the form (ax +by+cz)n for

some a. b. c, that is, it degenerates to the tangent plane. To remove this degeneracy,

we do the following:

1. Solve for g'(x, y, z), and compute

E 32jstj = (g1 (X(S, t),Y(3, t), (,, t)))n

i+)-n

2. Consider the linear system that consists of the first s' equations of (2.6) and

a =0. wherea = 0 is enoo-1 = 0. eo-l 0, or eoo,- I = 0 and s' is

chosen such that the coefficient matrix of the system has rank p(n).

:3. Find a 3,, which is nonzero and augment the corresponding a,, = 0 to the

above system, then solve it.
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This computation of the local implicit approximation results in an approximant

that has roughly n 312 -th order of contact. Thus, when raising the degree of the

approximant, the order of contact with the surface P(s, t) grows subquadraticaUy.

Example 2.6 Consider

P(s, t) = (x(s, t)/w(s, t), y(s, t)/w(s, t), z(s, t)/w(s, t))

where

x(s, t) = -200t 2 + 12st + 400t - 200 S 2 - 0 s

y(s,t) = 15t 2 
-

14st + lOt - s 2 +400s

z(s,t) = 200t 2 + Ilst-t+20O s 2 +2s

w(s,t) = lOt 2 -200t+100s 2 +200

We compute degree 2 and degree 3 local implicit approximations

g2 (z~y,z) =

-108.44294z 2 - 10.264638yz - 13.162097xz + 381.19047z

- 95.092836y 2 - .5.2 41114xy - 1.SS09524y - 94.85476x 2 + x

and

g3(x,y,z) =

1-3012126z 3 + 5.16125yz2 - 46.69081Xz 2 - 103.S1S164z2

- 1.1158845y 2z + 15.622598xyz + 4.518084yz

+ 1.267575x 2z + 180.40466xz + 381.19047z - 3.68 8 4814y3

- 48.00386xy 2 - 95.16589y 2 + 5.5613696X2y - 6.1573525xy

- I.S809524y - 44.977395X3 - 94.34699x 2 + X

Note that the normal of f 4 (x.y, z). the exact implicit form of P(s, t), at the

origin is almost parallel to z-axis. Thus, to show the performance of the local
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Table 2.4 Maximal deviations between the intersection curves

li n : local implicit form of degree n. le n local explicit form of degree n.

degree r=0.25 r=0.50 r=0.75 r=1.25 r=l.50 r=1.75

li 3 0.000000 0.000004 0.000035 0.000837 0.004964 0.019612

i 2 0.000289 0.002531 0.009630 0.066627

implicit approximation, we intersect the cylinder h(xy,z) = x 2 + y2 
- r 2 = 0

with the surfaces f 4 , g2, and g', and plot the intersection curves of f 4 = 0 n h =

0, g3 = 0 n h = 0, and g2 =0 n h = 0 in one figure. Figures 2.9 and 2.10, show the

intersection curves in cylindrical coordinates, for r = 0.25,0.5, 0.75, 1.00, 1.25, 1.50,

and 1.75. Table 2.4 lists the maximal deviations between the intersection curves

f 4 = 0 n h = 0 and g 3 = 0 n h = 0, and f4= 0 n h = 0 and g2 = 0 n h = 0. U

2.3 Remarks on Resultants

Different resultants are formulated in the classical literature for the purpose

of eliminating variables from systems of algebraic equations. Early expositions of

several formulations are found in Netto's book cited in the references. In essence.

resultants constitute a projection. A well-known problem of elimination based on

resultants is the possibility of obtaining extraneous factors. For example, when

implicitizing the parametric sphere

.(st) = (1- 2-t 2 )/( +s 2 + t 2 )

y(s,t) = 2ti(1+s 2 +t 2 )

z(s, t) = 2s/l(l + s 2 + t 2 )
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Figure2-9 fl =Olh =0Oandg92 OflhO



55

z 1.4

r-0.25)

Figure 2.10O f= lh 0Oand g Onlh 0
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the Sylvester resultant yields

256(x + 1)4(X
2 + y 2 + Z 2 - 1) 2

and the Dixon's resultant yields

-64(x + 1)(x 2 + y2 + z- - 1)

In each case, an extraneous factor x + 1, to some power, is present.

Technically, a resultant is based on formulating a system of linear equations

with symbolic coefficients. This is especially apparent in the derivation of Sylvesters

resultant. Macaulay recognized that extraneous factors technically are related to

dependent equations, and that they can be eliminated by division by a suitable

minor [47]. Modern work on the multivariate resultant tries to find this minor algo-

rithmically, i.e., to recognize and eliminate extraneous factors. See, e.g., [20, 13].

In our approach, a linear system is formulated numerically, hence dependencies

among the equations are easy to recognize. If the approximant is formulated with

the exact degree of the implicit form, then our approach determines the implicit

form without extraneous factors. If an approximant of higher degree is determined

with our approach. then a reducible implicit form with extraneous factors could

be generated.
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3. LOCAL APPROXIMATIONS OF 2-D SURFACES

In solid modeling with curved surfaces. a number of desirable surface opera-

tions, including offsetting, spherical blending and the formation of Voronoi sur-

faces, raise difficult mathematical problems that must be solved in order to repre-

sent and interrogate the resulting surfaces. Such surfaces cannot be easily defined

in the conventional 3-D space. In contrast, they can be formulated mathemati-

cally, with the theory of envelopes, in higher dimensional space in a straightforward

manner. For example, given the surface h(x, y, z) = 0. we formulate the r-offset

of h as the envelope of a family of spheres with radius r whose centers lie on the

surface h = 0. This formulation results in a system of four polynomial equations

in 6-D space. Such surfaces are generally 2-surfaces in R,' n > 3, and are defined

by

A(X,,X2...,Xn) = 0

f 2 (xi,x2.... 2 x,1 ) = 0
(:3.1)

f, 2(X1,,x 2 ,....X,) = 0

where the f, are polynomials or in matrix form as F(x) = 0. Although the exact

closed-form representation of such a surface

f(XI,X 2,X3 ) = 0 (3.2)

could be derived in principle by elimination methods such as Gr6bner basis or

resultant techniques, it is often not feasible to do so in practice due to the high

complexity of these methods.

For surface representations ini ;2:i-iimensional space to be practical, good

algorithms for some basic operat;als m%.e ,) Iw developed. Among them. as
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mentioned in (32], are locating points on surface intersections, tracing surface in-

tersections, and local surface approximations. It is our objective here, for a given

surface representation F(x) = 0 and a regular point x0 = (x ° , x0, .... ,
° ) on it. to

develop computational schemes for the local geometry of f(X, X2 , X3) = 0 and to

investigate approximation schemes which derive a surface of lower degree that ap-

proximates the given surface locally at SO°  (x0 , A xO) in (XI, X2, X3)-space. These

techniques will be of practical interest if they are efficient and can be incorporated

into algorithms for surface interrogation such as computing surface intersections.

In this chapter, we proceed as follows: Section 1 presents techniques that de-

scribe the local geometry of f(X 1 , X 2, X3 ) = 0. Section 2 presents an algorithm that

computes degree two implicit approximants of f(P 1 , 2 , X 3) = 0 without actually

computing f. Section 3 describes the computations for local explicit approximants

to f(Xi, X 2, X 3 ) = 0. In section 4, we derive a procedure for computing parametric

approximants.

3.1 Local Geometry of the Projected Surface

For a given 2-surface SF in Rn and a regular surface point x' , we first derive

some schemes that determine the normal vector and tangent vectors of Sf at a

regular projected point xO from the normals and tangents of SF at x'. We then

derive an algorithm to compute the normal curvature of surface Sf at k in a

tangent direction ir, which requires only the information provided by F(x) = 0 at

0X.

In the following, we assume that the surface point xu and its projection *O are

nonsingular. Let Txo(SF) denote the affine tangent space to SF at x °. that is. the

set of all tangent vectors to surface SF at x'. It is evident that TxO(SF) is the null

space of DF(x ° ) h = 0. and that Txo(SF) is a vector space of dimension 2 since

DF(x°) has rank n - 2. Note that at nonsingular surface points the tangent space
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of the surface S1 at 5€° , denoted as Tko(Sf), has the same dimension as Txo(SF) .

That is, the dimensionality of the tangent space is then invariant under projection.

A vector n is a normal to surface SF at x0 if n • h = 0 for every h E Txo(SF).

The normal vectors form a vector space of dimension n - 2. Since DF(x) has

maximal rank n - 2, the gradient vectors Vfl(x 0 ).... Vf._2 (x° ) form a basis for

the normal vector space of surface SF at x0 . Thus any linear combination of the

gradients vectors is a vector in the normal space. Note that the normal space of

surface S/ at a nonsingular surface point is of dimension 1.

3.1.1 Normal Vector

One may expect that computing the normal vector of the projected surface Sf

at point k0 = (x, x0,x0) from the DF(x° ) is as complex as the elimination process

from F(x) = 0 to f(x 1 ,x 2,x 3) = 0. Indeed, it is true unless we approach the

computation differently. Instead of considering the global surface SF, we consider

its tangent space at x0 and the tangent plane of S1 at :k0. The tangent space of

SF at x0 is the null space of

DF(x') (x - x0 ) = 0 (3.3)

from which the equation of the tangent plane of Sf at k0

Ax, + Bx 2 + CX3 + D = 0 (3.4)

can be obtained by linear algebra techniques such as Gaussian elimination (43].

Considering the elimination process, we obtain the following algorithm for com-

puting the normal vector of Sf at point co:

Algorithm 3.1

1. Consider C = Xf,(x 0 ) , where component C, of C is a the linear

combination of the unknowns a,. i = 1. n -'2.
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2. Solve the linear system

(J4=0, C'=0s ... , C=0

which is of dimension (n - 3) x (n - 2) and has one degree of freedom.

3. Let (&,, &2, ... , &,-2) be a solution of the above system and (C be the corre-

sponding C in step 1. Then the first three components of (C are the normal

vector of S1 at the regular point :o.

Theorem 3.1 Algorithm 3.1 computes the normal vector of the projected surface

S1 at ko = (x0, x,) if k is a nonsingular point on Sf.

Proof: Let I be the ideal generated by the system (3.3). Then

n- 2

C(x) = xaf.(x0)(X - X)

lies in the ideal I. Since (3.3) is a linear system, and the tangent plane (3.4) of

Sf at k can be obtained by eliminating the variables x4 , x5 , ... , x,, step 2 of the

algorithm is the elimination of the variables x4, x5 ,... ,x,. Therefore, the C(x)

with the computed coefficients (&1, &2..., &,-2) is in I n K[x1, x 2, x3]. Hence the

vector consisting of the first three components of (C is the gradient of C(x) which

is th normal vector of Sf at k' corresponding to the normal space of SF at x ° . 0

Note that this computation is valid only when ko is nonsingular. Suppose the

computation is valid at the singular point :k° . Then the matrix after applying

Gaussian elimination to DF(x) will not have maximal rank, which contradicts to

the nonsingularity assumption of x0 .

3.1.2 Tangent Vectors

Since the affine tangent space Txo(SF) 'If ',pv at a nonsingular surface point x°

has dimension two and is the null space ,f IF x'; h = 0. we let h, and h12 be

a basis of Tx,,4IF). The following theoren .,,,W ".iat cio ,orresponding basis of
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Tko(S 1 ) are the natural projections of hi and h2 , denoted as l, and 112 respectively,

provided that 1hl and 112 are linearly independent.

Theorem 3.2 If h1 and 112 are the natural projections of hi and h2, respectively,

into (xI, X2, x 3)-space and are linearly independent, then hi and h2 form a basis of

Tio (Sf).

Prooft Since DF(x) has maximal rank n - 2, its row-echelon normal form is

A B C 0 0 0 ..

X X X * 0 0 ... 0

LX X X X X X *

where A, B, and C are coefficients of linear terms in (3.4), *'s are nonzero numbers

and the x 's represent numbers that may or may not be zero. Since h, and h2 form

a basis of Txo(SF) h, and h2 are linearly independent and satisfy

[A, B, C, 0,0,0,...,Oh = 0

Thus fit and li2 satisfy

[A,B,C] li = 0

Furthermore, il and 1h2 are linearly independent. Hence f1i and h2 form a basis

of Tio(Sf). U

For a given tangent h to SF at a nonsingular surface point x° the tangent to

Sf at k' is the natural projection of h assuming k' is nonsingular.

Example 3.1 Consider the general parametric surface

x = hl(s,t)

y = h,(s, t)

z = h3(st)
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and a surface point (x° , yo, z o) = (hi(sO, to), h2 (sO, to), h3(So, to)). In five dimen-

sional space, we write the surface as

fi(x,y,z,s,t) = x-hi(s,t) = 0

f 2(x,y,z,s,t) = y - h2(s,t) = 0

f 3(x,y,z,s,t) = z - h3 (s,t) = 0

with surface point x0 = (x0 , y0 , z0, s, to). The gradients of the fi are

VfA(x°, yo, z°, so, to) = (1,0,0, hi., h1 t)

Vf 2(xo, Yo, Z, So,. to) = (0, 1,0, h2., h2.)

Vf 3 (xo, yo, z, so, to ) = (0, 0, 1, h3,., h3A,)

where hi, and hi~t are partial derivatives of h, with respect to s and t respectively

and evaluated at (s o, to).

The linear system

C4 = alh.,+a 2h2. +a 3 h3., = 0

C 5  a, ahit + a 2 h 2.t + cr3 h 3 t = 0

has a solution

(&1, &2 , a 3 ) = (h2,h 3t - h2th 3,, hith3, - h1 ,h 3t, h1 ,h 2t - hith23 )

which is (hj, h 2,, h 3 ,) x (hit, h 2t, h 3 t). Thus, the corresponding C as defined in the

algorithm is (&1, &2, &3, 0, 0) and (&1, &2, &3 ) is the normal vector of the surface at

(o. y0, Zo).

The DF(x) h = 0 has the general solution

A\(hs,, h2 s, h33 . -1.0) + A,(hit, h2t, h3 t,O, -1)

Thus the basis vectors of the affine tangent space are

h = (h, 3,h 2j,h 3 3,-1.0) and h2 = (ht, h.t, h3t,0.-1)
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and their projections into (XI, X 2, X3)-space

= (hl,, h2., h3,) and h 2 = (hit, h 2t, h 3t)

form the basis of the corresponding tangent space in (x, y, z)-space. 0

Example 3.2 Consider the implicit surface g(x, y, z) = 0 and its offset given

in Example 1.1. DF(x ° ) of (1.4) at surface point x ° = (xO,y ° ,z °,u 0 ,v o ,w o) =

(0,0,4,0,0,2) is

o 0 4 0 0 -4

000 0 0 4

2 0 0 -10 0 0

0 2 0 0 -4 0

The linear system with al, a 2 , a 3, a 4 as unknowns is

C4 -- -10a 3 = 0

Cs = -4a 4 = 0

C6 = 4a 2 -4a, = 0

and has a solution (&1, &2, &3, &4) = (1, 1, 0, 0). Hence the corresponding 4C in the

algorithm is (0, 0, 4, 0, 0, 0) in which (0, 0, 4) is the normal vector at (x' , yO, zo).

The general solution of DF(x) h = 0 is Alh + A2h 2 where

hi = (1,0,0. 1/5,0.0)

and

h2 = (0,2,0,0, 1,0)

serve as the basis of the affine tangent space. By natura: projection.

f= (1.0,0)

and

(.12  (0,2.0)

are the basis vectors of the corresponding tangent space in (x.y, z)-space.
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3.1.3 Normal Curvature

For a 2-surface in R 3 , formulae for computing the normal curvature of the sur-

face along a tangent direction at a surface point can be found in most differential

geometry books. However, we wish to compute the normal curvature of the pro-

jected surface Sf, in (xI, x 2, x 3 )-space, from a given 2-surface F(x) = 0 in Rn. It

is clear that one could first determine the local explicitization or local parameter-

ization (both are in (xI, X2, z 3)-space), discussed later in subsequent sections, and

then apply the standard formulae. In this section, we describe a method that di-

rectly computes the normal curvature of the surface Sf from the high-dimensional

surface representation F(x) = 0, without constructing a local approximant first.

3.1.3.1 The Normal Curvature of Hypersurface in R n

Let g(xI, x 2, ... , xn) = 0 be a hypersurface in R n and let S, represent the zero

set of g = 0. For p E Sg and v E Tp(Sg), and a normal vector field N on S., we

defi. e the linear map L. : Tp(Sg) -* T,(S.) as

Lp(v) = -VvN = -(N o 3)'(0)

whc e 3 : I - S1 is any parametrized curve on S . with 3(0) = p and j(0) = v. and

(_V c. 3)(t) = N(3(t)). The definition makes sense since the directional derivative

V,V is tangent to S.. Lp is usually called the Weingarten map or shape operator

of .- at p, see, e.g., [50, 66]. The generalization of Meusnier's theorem to high

dim-nsions states that 3(0). N(p) is invariant for all parameterized curves 3 on

S9 "ith 3(0) = p and 3(0) = v.

Lemma 3.1 (Meusnier) Let 3 be a parameterized curve on the hypersurface g

In R ' with 3(0) = p and 3(0) = v. Then

LP(v) v = 3(0) .V(p)

where A' is a normal vector field on S.
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If N is the unit normal vector field on S, and v is a unit tangent vector of S,

at p, the normal curvature k 9(v) of S_ at p in the direction v is defined as

k9(v) = Lp(v). v

The computation of Ln(v) • v can be conducted according to the following

lemma:

Lemma 3.2 Let N = Vg, Hg be the Hessian matrix of g at p, and v be a tangent

vector of g at p. Then

Ly(V) v = v Hv

Moreover, when v is a unit tangent
I

k,(v) = 1  ()i 1 Lp(v) v

Proof:

Lp(v) v = -VvN. v

= -VVg. v

ax (pOX 2 ang

-- (P) V,' L ()g
L- (P) V, (.,Lg O z,

i=- S= i=1 l

t 02g= -(PV
j=O18x (p)v v

= -vTH 9 v

According to Meusnier's Theorem, when v is a unit tangent we have

k3(v) = 3(0) NV(p)

where 3 is a parameterized curve on S_ with 3(0) = p and 3(0) = v. Thus

k'(v) = L,(v) v
VJ ;*(P)jL()



66

3.1.3.2 The Normal Curvature of Projected 2-D Surface in R'

For a 2-surface SF in Rn and its projected 2-surface S! in (xI, x2 , x 3 )-space, we

intend to compute the normal curvature of S1 in a given tangent direction directly

from F(x) = 0 without computing f.

Let :k° E S! and -; E Tko(Sf) be the projections of x0 E SF and v E Txo(SF),

respectively, into (XI, x 2, X3 )-space. In addition, let N be the normal vector field

on fi = 0. Since x ° E SF and v is a tangent to SF at x0 , x0 is a surface point of

f,=0 and v is a tangent vector to f,=0 at x0 for i= ,2,...,n - 2.

Let a,.-. ,,- 2 be real numbers such that _-' ajN(x) = (A. B, C, 0. 0).

where Ax+By+Cz+D = 0 is the tangent plane of f = 0 at Sc0, i.e., (A, B.C) is the

normal vector of Sf at Sco. In the followi rg, we will show that the L; 0 (v). v. where

L'xo(v) = -VN,, for i = 1,. n-2, and the linear combination E-' a(Lxo(v).

v) play an important role in computing the normal curvature of f(xI, x 2 , x 3 ) = 0.

Consider any curve 3(t) = (h1(t), .. ,3,(t)) on SF with 0(0) = x° and 3(0)

v. Then 3 is a surface curve on f= 0 as well, for i = 1. 2,.... n- 2. By Meusnier's

theorem we have
L'x.(v)- v = <3(0), .(x) > (3.5)

Hence

n-2 -2

,(L;o(v).v) = a, <!0). V,(x 0)>

n-2

= Z <3(o)., 1.V,(x°)>
n-2

= <j(0), Z NN(x0)>

=<(0), (.A, B. C, 0 ... 0)>

=<(31 (o), 32 (o), 33(0), (.BC)> (3.6)

where (3 1(t), .32(t). 33(t)) is the projected curve of 3 on S with

(31 (0). 3-20), 3 (0)) = 5c' and 1 3(O).,32 (O), 3-3(0)) =
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and (A,B,C) is a normal vector of S/ at :0. Notice that (A,B,C) and may

not be a unit normal and a unit tangent, respectively, to S1 at k0. For the right

hand side of (3.6) to represent the normal curvature of S!, both the normal vector

(A, B, C) of S! at k' and (i3 (0), /32(0), /33(0)) must be unit vectors. Thus, when /3
is a curve such that (/3I(0), 12 (0), 3(0))is a unit vector, according to Meusnier's

theorem, the right hand side of (3.6) divided by the length of (A. B, C) is the

normal curvature of S! at kc0 in the direction (/3(), 32(0),/33(3)). Hence, the left

hand side of (3.6) divided by II(A, B, C)I is the normal curvature of S1 at ko in

the direction of ir, provided that it is a unit tangent. Notice that the equality in

(3.5) is valid for a non-unit normal vector field Nj and any tangent vector v. We

summarize this fact as follows:

Theorem 3.3 Let Nj = "Vfi, i = 1,2,....n -2 and let at,.... ,n-2 be numbers

sch ait V,(x°) = (A, B, C,O....0), where (A,B, C) is the normal of S!

at :0 . Also let v be a tangent vector of SF at x0 such that i" is a unit tangent to

S1 at Sco. Then
1 rn-2ll(AZCllZ a(L' (v),- v)

I(AB.CAi=1 l

is the normal curvature of Sf at SO in the i direction.

The theorem and its proof suggest to us two computation schemes:

Algorithm 3.2

1. Determine v such that i is unit.

2. Derive 3(t) = (/31(t), .3(t)) on SF such that 3(0) = x0 and 3(0) v.

;3. Compute (3t(0),,;32(0), 33(0)).

4, Compute (A, B, C, 0 . o) = i-2 7 ,.nx) for some a,.... ,,-2 and nor-

malize (A. B, C) to ( 0) B.C'x with lirit length.

.5. Compute <(31(0). 32(0). .3 .'. . .(",' ,
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Algorithm 3.2 is conceptually very simple, however, the computation of the 3 on

a 2-surface SF is nontrivial.

Note that, as shown in Lemma 3.2. L (v) • v = -vTHi v, where Hi is the

Hessian of the hypersurface fi at x0 . Moreover, because of the bilinearity of the

form vTHi v, we have

n-2 n-2 n-2
ai(Lxo(v) • v) = Z a,(vTH, v) = --vT(- aiH)v

i=1 i=1 i=1

In the following, we state an algorithm that is well suited to computing the normal

curvature of Sf at k' in different tangent directions.

Algorithm 3.3

1. Compute Ni = Vfi, for i = 1,2. n -2.

2. Compute al,.. ,n-2 such that n-2
1 N,(X0 ) (A,BC.O...,O), where

(A, B, C) is the normal of S! at *0.

3. Compute Ho = '-,I caHj, where Hi is the Hessian of fi at x".

4. Adjust v such that V is a unit tangent to S! at ko.

5. The normal curvature of S1 at ko in the -, direction is

-1 t v

II(A. B, C)i

Let L 0 be the shape operator of the closed form f(XI,x 2, x 3 ) = 0 at SO. Due

to Meusnier's theorem, from (3.6) we obtain a formula for computing L{o(' •

Theorem 3.4 Let N, = Vf,, i = 2.... n - 2 and let o. a,-2 be numbers

such that ,cxiN,(x) = (A, B,C, . 0), where (A,B.C) is the normal of S1

at SO. Also let v be a tangent vector of SF at x°. Then

ri-2

t ( ai Lxo(v) - v)
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Example 3.3 Consider the implicit surface g(x, y, z) = 0 and its offset given

in Example 1.1. Let N be the gradient for the i-th polynomial fi, i = 1,2. 3,4,

xo = (xO 0, y, u0, vo , wo) = (0, 0, 4, 0, 0, 2), and v = (0, 1,0, 0, 1/2, 0) be a tangent

vector at x ° . In Example 3.2, we have computed (al,a2, a3, a 4) = (1, 1,0,0) such

that
4

(0,0,4,0,0,0) = a Za )(x0 )

Now, we compute Ho =i, and obtain

2 0 0 -2 0 0

0 2 0 0 -2 0

0 0 2 0 0 -2Ho =
-2 0 0 10 0 0

0 -2 0 0 4 0

0 0 -2 0 0 4

Thus,
-1 -vTHo v = -1/4

1f(0, 0, 4)11
which is expected to be the normal curvature of S1 at (0,0,4) in the direction

of (0, 1,0). Intersecting the projected surface with the plane that goes through

(0, 0. 4) and is spanned by the normal (0, 0, 4) and tangent (0. 1.0), we find that

the normal section is a circle of radius 4 and has normal curvature -1/4 at (0. 0, 4)

in the direction of (0, 1,0), which verifies the result. 0

Example 3.4 Consider the Voronoi surface of g and h in Example 1.2. Let .N be

the gradient for i-th polynomial f,, i = 1,2.... S, and let

x o = (XoO, zo0 , A o U o. wo, Wio , &,Co. r o) = (0, 0, 0, 0, 0, 1, 0, 0, - 1, 1)

and v = (0, 1.0,0. 1,0.0.1/2.0.0) be a tangent vector at x° . We find

(a,,a2 ,...cs) =l,l.0.0.-l.-1.0,O)
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such that
8

(0,0, -4,0 ..... 0) = Z ,N,(x ° )
:=1

We then compute He = i i and obtain

0 0 0 -2 0 0 2 0 0 0

0 0 0 0 -2 0 0 2 0 0

0 0 0 0 0 -2 0 0 2 0

-2 0 0 4 0 0 0 0 0 0

0 -2 0 0 "2 0 0 0 0 0

0 0 -2 0 0 4 0 0 0 0

2 0 0 0 0 0 -2 0 0 0

0 2 0 0 0 0 0 -4 0 0

0 0 2 0 0 0 0 0 -4 0

0 0 0 0 0 0 0 0 0 0

Thus,
- 1  Hv13v = 1/411(0 , 01 -4 )11

which is expected to be the normal curvature of S1 at (0,6,0) in the direction

of (0, 1,0). As shown in Example 1.2, the even Voronoi surface of g and h is

_ y2 - 8z which does have normal curvature 1/4 at (0,0,0) in the direction

I0. 1% 0).

3.2 Degree Two Implicit Approximation

Our task here is to derive a degree tv-o implicit approxirnant of S1 in (xl, x2, x3)-

space for the given F(x) = 0 and a surface point x ° . \Ve require that the approx-

imant has the same normal direction as S! at R' and that its normal curvatures

agree with those of Sf in all tangent directioiw at -^<. The constraint on curvature

agreement in all directions is difficuit to r,: ',,, rai~zitforwardlv. iowever. using

the following Three Tangents Theorem .52, .'.,' , tie, formvlate the constraint

easily.
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Theorem 3.5 (Three Tangents Theorem) Two surfaces with common normal

direction at a surface point have the same normal curvatures in every tangent di-

rection if and only if their normal curvatures agree in three tangent directions of

which any two are linearly independent.

Applying this theorem, the constraints above can be translated into a system

of seven equations, some linear and some nonlinear. The nonlinear equations stem

from the normalization of the normal vector of the approximan in the normal cur-

vature computation. Using Lemma 3.2 to rephrase the Three Tangents Theorem.

however, results in a system of linear equations which enforce the constraints.

Corollary 3.1 Two surfaces with identical normal vector at a surface point p have

the same normal curvatures in every tangent direction if and only if values of their

L (v).v agree in three tangent directions of which any two are linearly independent.

Let g2 (X1 ,x2 ,X3) = T~i+,+k=OaIkX12'JP be a generic degree two polynomial

with the symbolic coefficients aik. Suppose vi, v2 and v 3 are tangents to SF at xO

with the property that any pair of their projections, ' ,'F2 and V3 respectively, in

(xI, x 2 , x3 )-space is linearly independent. We translate the constraints to a linear

system as follows:

1. g2(R0 ) = 0.

2. Vg2 (RO) = (A, B, C), where (A, B. C) is the normal vector of Sf at Ro com-

puted using Algorithm 3.1.

3. For i = 1,2,3,
Lx 0(i%,)" -i = L o (,). -,i

x x

where Lxo( i/) • = -9THir, and L{o(i',)" -', is computed according to
x x

Theorem 3.4.

This formulation results in 7 linear equations in 10 variables. Since g'(x1, x2, .r) =

U and -/g XI .X2,X3) = 0. where = 0. represent the same surface. g(.-r2, -r3)
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has 9 coefficients on which the surface depends. Thus, we can adjoin to the linear

system the additional equation

atik - 1 0

for some 0 < i + j + k < 2. and obtain a 8 x 10 linear system from which the

coefficients of g 2 can be computed with two degrees of freedom. We give the

algorithm as follows:

Algorithm 3.4

1. Form a generic polynomial g 2(x 1 ,x 2 ,X 3 ) = Zt+,+k=OaijkXIX2X3 , where the

ailk are symbolic coefficients.

2. Compute Ni =Vfi, for i = 1,2 ...., n -"2.

3. Compute al,... -2 such that _- 2 aiN,(x) = (A, B, C. 0...., 0), where

(,A. B, C) is the normal of Sf at k'.

4. Compute Ho = F--2 Q,Hi, where H, is the Hessian of fi at x0 .

. Derive three tangent vectors vI, V 2 and V 3 to SF at x 0 such that any pair of

their projections, I, i 2 and v3 respectively, in (xI, x 2, X3 )-space is linearly

independent.
Vg2 (kI) = :(0 i , 2 (SO),'0 k )

6. Let g2( 0) =2 g

7. Form the following linear system:

ailk - = 0, for some 0 < i + j+ k < 2

1= 0

-2( ) A -- 0

g,, (k) - B 0

g 1 () C'= ,)

4H ri - vTo v1 0



73

rHqr2 - v2Hov 2  = 0

Trig 3 - vHo v 3 = 0

8. Solve the above system for the coefficients of g2.

Example 3.5 Consider the implicit surface g(x, y,z) = 0 and its offset given

in Example 1.1. Let x0 = (x 0 ,y ° ,z o,0 v o,w o ) = (0,0,4,0,0,2), and let v, =

(1,2,0, 1/5,1,0), v2 = (1,1,0, 1/5,1/2,0), v 3 = (2,3,0,2/5.3/2,0) be three tan-

gents at x0 . Note that any pair of their projections is linearly independent. Let

g2 (x3,x2 ,x3 ) = _ik x2x be a generic degree two polynomial with the

symbolic coefficients aijk. We form the following linear system:

16aoo 2 + 4ao01 + a000 = 0

4alo, + aloo = 0

4ao + aolo = 0

Saoo2 + aool - 4 = 0

-2a2oo- 2a11o - Sa0 20 - 2allo + 28/5 = 0

-2a2oo- 2allo- 2ao2o + 13/5 = 0

-8a2oo - 6alio - 6alio - ISao2o + 77/5 = 0

When aoo - 1 = 0 is added to the system, for the unknown coefficients

(aoo, aI 0o, aol 0 , aOl , a 2oo, a, O, alO , a0 20, aoi, ao2 )

we obtain the general solution

(1, -4a, -43. -9/2, 4/5, 0. a, 1/2,3, 17/16)

With a = 3 = 1, we have

g2(x, y, z) = - 4x - 4 9 +X2 1 17..-.7: + Xz + "y -+gz + 76z
- 16
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3.3 Local Explicit Approximation

The implicit function theorem ensures that system (3.1) dotermines n -2 com-

ponents of x as functions of the remaining 2 components in a neighborhood of any

surface point x0 at which DF(x ° ) has rank n - 2. Since DF(x ° ) has maximal

rank n - 2, some set of n - 2 columns of its matrix is linearly independent. In

the following, without loss of generality, we assume that the last n - 2 columns

are linearly independent, and hence the determinant of the Jacobian matrix of

fl, f2,. .- , fn-2 with respect to X3, x 4,. .. x,, denoted as IJF(x°)I, is nonzero. The

implicit function theorem guarantees that there exists a neighborhood V of x'. an

open set U C E '2 containing (x4,xA), and a mapping 41 = (0/3, P4, w,,) defined

on U such that [JF(x)I - 0 for all x E V. and for 1 < i < n -"2.

f,(xI, x 2, W3(xI, x2 ), . ,(x1, x 2)) =0 (3.7)

for all (xi, x2 ) E U. Let tji be defined as

wdxix 2)= b('xx (3.8)
j+k>o

and f,(xl, x2 ) denote f,(Xz, x 2, w3 (xI, x 2), .. (xl, x 2)).

It is clear that. in (xI, x 2, x 3 )-space. x 3 - W3(x 1 , X2) represents the local explicit

approximation of the projected surface (3.2) at (x0,4 , and might be called a

local explicitization of the surface. The local explicitization of an implicit surface

g(XI, X2, X3) = 0 has been considered in [48].

The unknown coefficients of wi can be calculated from the chain rule with a

linear svstem solver. By requiring that the k-th derivatives of f,, i = 1. 2. n -2.

wita respect to x, and x 2 are identically zero, a linear system with unknown

coefficients of degree k terms is obtained. It is structurally very simple. However.

the direct application of the chain rule results in a formula which is algebraically

tedious. In the following. we develop a recursive formulation which presents the

computation in a more suitable manner.
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When we assume that x° = (0, 0. 0) is the origin, the constant terms of
fi, a. o).o, and the constant term of 0k,, b(, are both zero and the partials .ILL

evaluated at (0,0) and divided by i! and j! are the coefficients of xJZ' in fi(xi,x 2 ).

With this property, a recursive formula is derived as follows.

Let matrix A be the Jacobian matrix of f1, ....., f,-2 with respect to X3, ,.... X,

evaluated at x°, i.e.

a(1) ) .. a .o0010.. 0 0..1

A =- JF(x° )=

(n-2) (n-2)a 1 .0  a0...o1

We also define (d(j))kt as in [4S1, which is the coefficient of xkx' in (Vi(xl,x 2 ))2 ,

that is,

(w,(XIX2))= (d,(j)l),1 x xk
jt 1

Analogous to the recursive derivation for (a(k))9 in Section 2.2.1, the (dj(j))kI can

be recursively defined as

1 ifj = k=l=0

0 ifj=0and k+l> 1

kib()  if j =1 and k +l> 1

,.l<p+q<k+11(dt(j - 1)) " bkp)jq) if > 2 and k + >j

The formula for computing b(), where j + k > 1 and i 3, 4,.... n, is:

For j + k = 1

b(3)(1)10 a-( 10... 0

/)(10' -a lo0...O0

and

1
A = "
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For j + k > 2
b((3)r
jk -- jk

A

b(-) -r(n-2)L k _rjk

where

r) =(0)r(O __ O a o... °0

j+k-1 k +13  kn1 (4 . J
+ Z Z Z a (

)l +J2=O++k,,- )30 ,=O

J3+--.+3,)2- Ji -J2

Example 3.6 Consider the surface g = 0 and its offset given in Example 1.1 and

the surface point xu = (x , Y y 0, zO u0, V0 wo) = (0, 0, 4, 0, 0, 2). First of all. we have

to translate xO to the origin, and as the result, system (1.4) becomes

:2 _ 2b + y 2 _ 2vy + x 2  2ux 2 + v 2 +u 2 +4 4 = 0

62 + v 2 + 4u2 + 4 tb = 0

-4u, + bx + 3ut'b + 2x - 10u = 0

-vi+,zby r-2y-4v = 0

which has the Jacobian matrix A with respect to i, u, v, tb and evaluated at

(0,0,0.0.0,0),

4 0 0 -4

0 0 0 4A =

0 -10 0 0

0 0 -4 0

Solving two linear systems, we have coefficients for linear terms

(b(3) b(4) s) ()

10o , b , b,(o) = (0,1/5,0,0)

(b,(3) b,(4) b ) s)b(6 ) = (0,0,1/2,0)
'01 ) 01 01 01

For j + k =2, we have

( ) (2) (3) I)

-r(o)- r, , ' = (0,0.0.0)

( I,) ' ) ) 1 1) ,,(-(,-J, -r..-r,,, = (-1.0,.0.0)
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and have coefficients
b() b4, ( ), 6

20 20 o = (-1/4,0,0,0)
(b(3) b(4) ) ((,6,),o)

11I , b , , l b(5) ,1(0 ,0

(b 3) b(4)1 bs), b 6)
02 02 ) = (-1/4,0,0,0)

Thus, i = -(x2 + y2)/4 and after the reverse translation z = 4 - (X:2 + y2 )/4 is the

degree 2 local explicitization of the surface at (0, 0, 4, 0, 0, 2).

3.4 Local Parametric Approximation

In [141, a Taylor approximant of the intersection curve of two implicit surfaces

is constructed which serves as the local parametrization of the intersection curve.

We generalize this method to our problem domain.

For a given system of equations (3.1) and a point x" on it, we seek a paramet-

rically described solution

D(u,v) = (0 1(u,v),0 2(u,v),. .. ,",(u,v)) with D(0,0) = x°  (3.9)

in the neighborhood V of x0 . Solution (3.9) is basically a local parametrization of

the surface represented by (3.1) at point x'. The three coordinate functions

Xi = O,(uv), X2 = 0 2(uv), X3 = o3 (u,v)

define a local parametrization of the projected surface (3.2) in (xl, X2, x 3)-space.

When the hypersurfaces f, intersect transversally and are not singular in the

vicinity of x° such a parametrically defined solution exists. In the neighborhood

of x'. V. the surfaces are hence defined as the solution of

v,(u. ) -f,(ol(u.v),o 2(u,v). o,(uv)) = 0. i = 1.2,..... n-2. (3.10)

The Taylor expansion of f,(u, v) in power of u and v is

,f , O)f, ; ,92 ' i. , .2 C2  )2
U)=~oit -7 2v e)?,,vd 2 dt,2*
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.0 0) + +  +"
E= axaz au +VF aja

= f,(4(OO))u Of(°f, Oo,0) + Of, O0,0)

+ .- 5(-0f (x° • U ,,() + ,.(0, ) - I, /(0 , )

u2[Vf,(x°) • uu(0, 0) + Df(0, 0) H., O0)
U2

+ -5[Vf,(x°) • v,0 0) + ,0 0). H1, • . 0)]

+ uv(Vf:(x0 ) - (Dv,(0, 0) + (DO 0) - H1 , - D 0 0)]

+ - -(3.11)

where H1 ,, the Hessian of f~, and all the derivatives of f, are evaluated at x0 . and

all the derivatives of I, and 0i are evaluated at (0. 0).

In equation (3.10). the coefficient of each monomial uav k must vanish, so by

requiring the coefficient of u&JvA be zero for 1 j + k < m. a truncated local

parametrization of degree m can be derived. This amounts to solving the following

series of linear systems

Vf (x) 0 = .=1. ..... n - 2 (3.12)

where 1 < j-r-k < m. (jkI0.0) = ('0),. and the Bare

expressions of partial derivatives of f, and lower degree partial derivatives of o,,

for example.

B"= 0 (3.13)

-( 1)  0 (3.14)

B = -,,(0. 0) 11., ,i,(0. 0) (3.15)

Bit - - (0,0. 0 H,'. j0. 0) (3.16)

B"' = - .(0. ) I. .0i t3.17)

Note that the B( ') can be recursive0 defi...: x ieorizn .. 0). in analogy

to Section 3.3.
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The system (3.12) is a (n - 2) x n system. Since we assume that DF(x ° ) has

rank n - 2, the solution of this system can be written as the linear combination

of t1 , t 2, Vfl(x°),..., Vf,- 2(x°), where tj and t2 form a unit vector base of the

tangent space at x ° , that is,

4k 0) = a(t 1 + ( t2 + j. Vf1 (x ° ) + + 3( Vf.- 2(x0  (3.18)

Substituting into (3.12) yields

n-2

=3() VfL(x) B'k, i = 1,2,. n - 2. (3.19)

from which the unique solution, 3(l) ,.. , can be derived. Hence, the ex-

pression (3.18) with a and aj, arbitrarily selected is the general solution of the

system (3.12). The suitable values for ,(i) and a (2) are chosen as follows:

1. For systems (3.13) and (3.14), we have

= k jk " " -jk -0

We assign a 1 anda, = 0 for (3.13) and a() = 0 and (2) -

ag k an ( = jk

for (3.14) so that the isoparametric curves 0((u,0)) and 0((0,v)) i:itersect

transversally at point x0 .

2. For systems (3.15), (3.16) and (3.17), we assign ck = (2) =0

Note that the three coordinate functions

XI = 6 1 (U, V), X2 = 0 2 (u, V), X3 = ( 3 (u,v)

obtained in this way define a local parametrization of the surface (3.2) in (XI, X2. X3)-

space.

To compute the solution of system (3.12) with a numerically stable method.

we consider singular value decomposition. see e.g., [29]. The matrix (DF(x°))T is

factored as

(DF(x)) r = U71",



so

where U = [ul,... ,u,] E R " 'f and V = [vl,...,, 2] E R(n- 2)x(n - 2) are orthog-

onal matrices, and E E Rnx(n- 2 ) is a diagonal matrix. With direct substitution of

the factorization, system (3.12) becomes

V TUT ,(0, 0) = B

where B = [BB,.. ., (- 2)]T . Its solution can be generally written as

DJvk(0, 0) = 1 1 u + + + N,,Un

and because the rank of the differential matrix is n-2, Ei 5 0 for i = 1.2 . n-2,

and thus the -1, 7n-2 are uniquely determined by

and -/,-, and "Y, are arbitrary. Here ul, u 2 .. , u,-. 2 span the range of (DF(x°))T.

hence span the same space as the gradients. Note also that the null space of DF(xO)

spanned by u,_ 1 and u,. Thus we obtain C, 0) = u,_ and (,, 0) = u,,. For

(2( (, 0), (0, 0), and (I)2(0,0), we let In-I = -Y, = 0.

Example 3.7 Consider the surface g = 0 and its offset given in Example 1.1

and the surface point x0 = (x°, y° Z9 uo, v0, wo) = (0- 0,4.0,0,2). It is clear that

(O.0) = (00. 4.0,0,2), (I,(0, 0) = ti and ,(0,0) = t2 , where t = (5/v '2.0.0. 1/v '. 0. 0 ,

and t 2 = (0,2/v/.5,0,0, 1/v5,0). By applying formula (3.19), we have

(20t ,20), )320 )) = (-5/52, -3/26,0,0)

(! ). 3(2), , 3)t,(4)) = (0,0,0,0)
( (I) 3(2) '3(3) (4)

0'o2,1 02,1o ,, - = (-1/20.-:3/40.0,0)

Thus. from formula (3.18). it follows that

(D,2(0.0) = (0.0.-5/13.0,0.-1/13)

D",(0.0) = (0.0.0.0.0.0)

(D,2(0.0) = (0.0.-1/:.0.0.-I/10)



Consequently, we have

0pi(s,t 0 726

02 (s, t) = 2

03(-S, 0 --Ls' t 2
26 10

as the local parametric approximant of degree 2 in (XI, X2, X3 )-space.
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4. PIECEWISE APPROXIMATIONS OF 2-D SURFACES

Implicit surfaces have recently become more important in CAGD and solid

modeling. In part, implicit surfaces have specific advantages over the traditional

parametric surfaces. For example, many complex objects can be modeled more

easily using implicit surfaces. and certain geometric operations, e.g., membership

classification problem, can be handled straightforwardly when implicit surface rep-

resentations are available. Moreover. using implicit surfaces, a number of sophis-

ticated techniques have been proposed, e.g., the substitution blending surfaces of

[34, 35,'36, 37].

As the role of implicit surfaces increases in importance in solid modeling and

CAGD, rendering implicit surfaces efficiently becomes a crucial support in surface

design. In computer graphics, many surface rendering algorithms rely on piece-

wise linear approximations (PLAs) of a surface since a PLA allows one to take

advantage of hardware capabilities and reduces the cost of expensive ray casting

in the rendering process. However, while the PLA of parametric surfaces has been

extensively studied and utilized as a tool for the evaluation of surface intersections

[10, 16, 38, 41, 42] and for rendering, it seems that much less attention has been

paid in the literature to the PLA of implicitly defined surfaces. Recently, Bloomen-

thai [17] has proposed an algorithm for computing the PLA of an implicit surface

based on space subdivision using octrees. In [9, 7, 8, 6], a simplicial continuation

algorithm is presented for obtaining a PLA to a component of an implicit surface.

Both methods fundamentally rely on vertex evaluation. Rheinboldt [56. 57] has

presented an algorithm that maps a triangulation of R P to a p-manifold, where

p > 1, and hence induces a triangulation on the p-manifold.
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Offset and Voronoi surfaces of implicit surfaces can be formulated as the projec-

tion to R3 of 2-surfaces that are implicitly defined in six and ten dimensional spaces

respectively. Algorithms using space subdivision or simplicial continuation can be

generalized to compute the PLA of the 2-surface in high-dimensional space. Thus,

to compute the PLA of the offset of an implicit surface, we could compute the PLA

of the 2-surface in 6-space, and then project it into 3-D subspaces. However, as the

formulation dimension increases, the complexity of computing the PLA increases

exponentially. To reduce the complexity, we propose an algorithm that determines

the PLA of the projection to R' of the 2-surface defined in high-dimensional space,

with all major computations performed in 3-space.

In Section 1 we briefly describe a method based on the simplicial continuation

method due to Allgover and Gnutzmann [T], and explain some difficulties when ap-

plied to offset, Voronoi and blending surfaces. In Section 2 we sketch the proposed

algorithm in pseudo code, and then in Section 3 we describe the computations in

detail.

4.1 The PLA of Offset, Voronoi and Blending Surfaces

As described in Section 1.1.3, the offset of an implicit surface can be viewed as

the projection to R3 of a 2-surface in R6 . and the Voronoi surface of two implicit

surfaces as the projection to R.3 of a 2-surface in Ri0 as shown in (1.3) and (1.5)

respectively. The 2-surfaces are represented by the following system of n - 2

equations in n variables,

f (XI, 2 ... r-X ) = 0

f 2(x 1', . .. . ,0 = 0
= (4.1)

fn-2(X.,X2 .... X,) - 0

abbreviated in matrix form as F(x) = 0. We suppose that the target surface we are

interested in is in (XI, £ 2, r3 )-space. A closed-form f(XI . X2, X3) = 0 can be obtained
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in principle by eliminating the last n - 3 variables, but this is often not possible

in practice. It is also impractical to compute the PLA of the surface in n-space.

using generalizations of space decomposition or simplicial continuation, because

the complexity of the computation increases exponentially with the dimension of

the space. One way to reduce the complexity might be by computing the PLAs

of the desired surface, e.g., offset, and its basis surface in parallel in such a Vay

that the major computation is performed in the orthogonal 3-D subspaces. We

have looked into such an approach for computing the PLA of an offset surface. Let

system (1.3) define the offset in R 6 . For a pair of corresponding points xi and x2

on the offset and its basis surface respectively, we determine two 3-simplices. one

containing x, in (x, y, z)-space and the other containing x 2 in (u, v, w)-space. Then

two sequences of transversal simplices are constructed in parallel. Two sequences

of simplices are constructed that are coordinated by the following computations

and considerations:

Let a, and a2 be two simplices that we are currently processing, x, E ol be a

point on the offset surface and x2 E c2 be the footpoint of x, on the basis surface.

1. Determine the simplex a C R 6 such that (xl,x 2 ) E a and a projects to o'l

and a 2.

2. Compute the affine map H that interpolates F(x) at all the vertices of 0'.

3. Project the affine map H to H, and H 2 in the two orthogonal subspaces.

4. Compute the intersections of Hi with edges of o',, for i = 1,2.

5. Pair the intersections with o%1 and a2 to obtain points in 6-space and refine

them iteratively back to zeros of F(x) = 0. "The points will be the new

(xI, x2).

6. Based on x, and x 2 , we deteu,:.',t, iow to pivot the current pair of simplices.

The resulting simplices are t ,, ::,,w ri irid ,.
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7. Go back to Step 1.

We have investigated such an approach and found it unattractive for the following

reasons:

" For given o' containing x, in (x, y, z)-space and o-2 containing x2 in (U;, v, w)-

space, there are 4!4! possible simplices a in 6-space that project to the same

pair a, and a.2. Hence Step 1 requires considerable computation for generat-

ing a and checking if (xI, x2) E 0..

" For two transversal simplices a1 and a 2, the simplex a fo.nd in Step 1 might

not be transversal. Suppose (, 2) is the pair of simplices in the previous

step, corresponding to the simplex & in 6-space. That is. a1 and a 2 are

the result of pivoting &I and &2 in 3-space, respectively, with respect 'o

shared transversal faces. Note that the pivoting of &I and &"2 correspo-ids

to a sequence of pivotings of & which is not necessarily done with respect to

transversal faces. Therefore, a might be not transversal. Now (x1 , x2) E a.,

and so it is easily seen that in such a case the surface penetrates a although

all vertices of o have the same signs on vertex evaluation. In this case. the

computed affine map H is useless for continuing the computation.

• The two projected affine maps H1 and H 2 are generally not the affine maps

of oa and 02 respectively. Hence the projected affine maps for adjacent 3-

simplices are often not continuous at the shared face.

" The intersections of Hi with a,, for i = 1.2, are often not in correspondence.

and then it is not possible to define a meaningful point pairing.

" When applied to offsets of parametric surfaces, Steps 4. 5. and 6 require

substantial modifications.

Using 3-simplices is attractive because with it vertex evaluation is unambiguous

and there is a simple pivoting scheme. lowever, adaptive subdivision resulting
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again in 3-simplices is more complicated. So, if vertex evaluation is not necessary,

using cubes to subdivide space might be a better choice since adaptive subdivision

is very simple.

The parametric approximant '1(s, t), discussed in Section 3.4 could be used

in place of an affine map. However, the coordination of the sequences of cubes

is complicated, especially when computing Voronoi and blending surfaces where

more than two sequences of cubes have to be put into correspondence.

4.2 Proposed Approach

Instead of computing a PLA of the 2-surface in n-space, or its projection into

several subspaces. we will compute the PLA of one projection only. In the case

of offset surfaces, this means that we approximate the offset in 3-space without

explicitly approximating the basis surface as well, or the 2-surface in 6-space corre-

sponding to both the offset and its basis surface. We will use a method similar to

simplicial continuation in 18], but based on local parametric approximation. The

approach is well suited to those 2-surfaces that have been defined in R 'h, but whose

projection to 3-space is ultimately of interest.

Let F(x) = 0 be the surface definition in R", S1 its projection into (xI, x 2, X3 )-

space. Given a regular surface point x = (xI, x 2) E R", where xi E B and x2 E

R '
n

- 3, and a cube in R3 containing xi, a sequence of consecutive cubes intersecting

the surface Sf is generated in a fashion that spirals outward from x1 . For each

cube, a degree two parametric approximant $(s, t) = (, 1(s, t), 02(s, t)..... (s, t))

of F(x) = 0 is derived, and (l(s,t) = (¢t(s,t), 2st),¢ 3 (s,t)) serves as the

surface approximation of the target surface in (x 1 ,X 2 , x3)-space. The parametric

approximant (D(s, t) plays an essential role in this approach. First of all. the

intersections of ( 1(s, t) with the edges of the cube are used as estimates that are

refined to surface intersections along edges of the cube. Secondly, the parametric

approximant provides a way of recovering a point in R' while doing computations
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in R3 . Thirdly, when extending the surface approximation into a neighboring

cube, O(s, t) provides a mechanism for obtaining an estimate to a surface point

x = (xi, x2 ) E R1 such that x, lies in the neighboring cube. With this parametric

approximant, we are able to march on the surface in (xI, x 2, X3 )-space although

the surface is formally defined in R", n > 3. This approach is of course also

applicable to offsets, Voronoi surfaces and blends where some of the basis surfaces

are in parametric form. For the computation of parametric approximation, see

Section 3.4. We give a high-level description of the approximation algorithm.

Algorithm 4.1

Input

F(x) = 0

x = (xi, x 2 ) E Rn: a regular surface point where x1 E (xI, X 2, x 3 )-space

B: a cube with edge size 5 containing x,

D: a compact domain (a, : a2, bi : b2, ci : c2) in (xI, x 2, x 3 )-space

Output

L: List of transversal cubes and their surface intersections where

the cubes are contained in D or intersect the boundary of D.

begin

(1) IV=0 L=0;

repeat

(2) Compute the degree 2 parametric approximant D(s, t) of

F(x) = 0 at x;

(3) Compute the intersections of Dl (s, t) with edges of B;

(4) Refine the intersections back to the projected surface Sf along the

edges of B;

(5) face(B)= { [F. < (ei,pil),( Ri, (,I. '.. >. < (e,. P,2), ( 2, (sQ, t, 2 )) >]

F, is a face of B. e,l a:-,, ,tre eri!es of face F,.

Sf intersects ei, at p,. .:,,:;' :. :lhe point refined



from DI(sij, t13), and (DI( j tij) is on Ei, j = 1, 2

(6) L = L U { < B, 1(s, t), face (B) >}1;

(7) Remove those faces in face(B) that are outside D,

(8) for B3 E WV begin

(8-1) if B and .B have a common face F

and common surface intersections p, and p2

then begin

(8-2) f ace(B) = f ace(B) - {[F,< (e., p 1 ,(,- 1 , (s 1,tj)

(8-3) f ace(B) = face(B) - {[F,< (el, pi), (El, ( 1, i)) >.

(8-4) if face(fB) = 0 then WV =W - {B}j;

end /* if *

end /* for */

(9) if face(B) #60 then begin

(10) IV IUB;

(11 B ..

end

(12) else Select a cube P from 147:

(13) Select [F, < (el, pa), ( I, (SI, t1)) >, < (e2, P2), ( 2, (32, t 2 )) >1 E face(B);

(14) Determine (u0 , vo) from (si, tj) and (s2, t.2) such that '?(uo, vo) can be

refined to a surface point x = (XI, X2 ) where x, is in the cube B

that shares F with B

until IV=

end
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4.3 Detailed Computations

4.3.1 Intersecting A Parametric Approximant with Edges of a Cube

A crucial step in the Algorithm 4.1 is the computation of points at which the

parametric approximant intersects the cube's edges. This computation is more

complicated than intersection with an implicit approximant. With an implicit

surface approximant, vertex evaluation can be used to determine which edges in-

tersect the surface and then the intersection point on each edge can be estimated

by subdivision or interpolation [17, 45, 81.

When tracing the intersections of 0 1(s,t) with B, at least one closed loop of

curve segments will be formed and each such loop corresponds to a closed loop in

the (s, t) parameter space. Since qbl(s, t) approximates the surface locally within

a cube B and the intersection points along the edges of B are only used as ap-

proximates to surface intersections of S1 with edges of B, only the "nearest" in-

tersections with D1 (s, t) are of interest. More precisely, only those intersections

whose parameter values lie on the innermost loop containing (0, 0) are considered.

In the following, when we mention surface intersections with edges of a cube, only

surface-edge intersections of this kind are referred to. It is easy to see that 0D(s. t)

may intersect the edges of B in 3,4,5, or 5 points, as shown in Figure 4.1. As

degenerate cases, DI(s, t) can penetrate a face of B without intersecting any edge

or intersect only one edge of B in two points, see Figure 4.2. We formulate the

problem of finding the intersections as follows:

Problem 4.1 For given 41 (s,t) = (O 1(S,t),0 2 (s,t),03 (s,t)) of degree 2 and a

cube B containing D(0,0), compute the edge intersection points of 1 (s.t) with

B.

As a subproblem of (4.1), we explain how to compute the intersection of O1(st)

with an edge of B. The line L containing an edge 9V of the cube B is the intersec-

tion of two face planes P1 (xI, X 2, X3) = 0 and P'(X. £2, £3) = 0. Thus, substitution



90

(3 points) (4 points)

(4 points) (5 points)

(6 points) (6 points)

Figure 4.1 Intersecting (P,(s. t) with a cube P, (Rtegular cases)



91

/'ri

(a): no intersection (b): 2 points

Figure 4.2 Intersecting 'i(s, t) with a cube B (Degenerate cases)

of 01 (s, t) into P and P2 yields the two equations

p1(s,t) = 0
(4.2)

(s,t) = 0

which represent the intersections of 01 (s,t) with L in parameter space. For

quadratic approximants, pl(s,t) and p2(s,t) are of degree 2. System (4.2) can

be solved either algebraically or numerically.

Using a resultant method, we obtain the resultant of p, and P2 as a degree 4

polynomial in, e.g., s. This univariate polynomial is then solved by a root finding

algorithm. Substituting each root S into p,(s, t) = 0 and p2 (s, t) = 0 results in a

polynomial in t which yields solutions . The computed solutions (., i) are checked

to see if i 1 (. i) is on f'U". Since there might be more than one such (i,i), it is not

trivial to determine which (., i) is nearest. The computation has to be done for all

edges of B in order to find the desired intersections of DI(s, t) along edges.

To apply Newton iteration to system (4.2). an initial point is needed. Possible

initial points would be (so, to) values arising as the intersection of the tangent plane
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(a) (b)

0: intersections of tangent plane with edges

: intersections of approximant with edges

Figure 4.3 Intersecting a tangent plane with the cube B

of 41(0, 0) with the edges. However, these initial points represented as (so, to) in

the parameter space might not be close enough to the true intersections if the cube

is large compared to the radius of curvature of (D. See Figure 4.3(a). Moreover.

we might have fewer initial points than the number of intersections with ZD. and

it is unclear how to ascertain that all intersections have been found. See also

Figure 4.3(b). Notice that

1. If the isoparametric curves D1 (s,0) or t01(0, t) intersect a face F of cube B

then D1(s, t) intersects edges of F at least at 2 points.

2. All intersections of D1 (s, t) to edges of B form a closed loop.

With the above observations. we derive the following algorithm, which is reliable

and fairly efficient.
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Algorithm 4.2 (For Problem 4.1)

Input

B: a cube

(DI(s, t) a degree 2 parametric surface with (D(O 0) inside B.

begin

(1) C= ;

(2) Find an intersection <Di(s 1 , ti) with an edge el of B,

where ei = Fo fl F1 , Fo and F, are faces of B;

(3) LF = Fo; Le = e; Ls = s; Lt =ti;

(4) repeat

(5) Find the second intersection 4 1 (S 2 , t 2 ) on an edge e2 of F1,

where e2 = F, fl F2 , F2 is a face of B;

(6) C C CU f{< ((Fo, Fi),ei, (si ti)), ((F, F2 ), e2 , (s2 , t2 )) >}1;

(7) FO F1: F1 = F2; el = e2; S1 = S2 ; t1 =t2

until FO = LF and (si, ti) = (Ls, Lt);

end

For step (2) of Algorithm 4.2, we do the following:

Algorithm 4.3

1. Find a face F0 of B that 01 (s,0) intersects, say at p.M):

(a) Substitute (b,(s, 0) into the equation of plane F0 and solve the resulting

degree 2 univariate polynomial in .s.

(b) Take the real root . . if there is one, that is closest to zero and determine

if 4D (i, 0) is inside F0. If so. we have found the intersection.

2. (a) Substitute 01i(s, t) into the equation of plane F0 obtaining a plane curve

p(3' t) = 0.

(b) Trace p(.s.t) = 0 starting at (..0) tintil one edge el = of FO is crossed

over at(.t.
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(c) Apply Newton iteration to System (4.2) and refine (, t) to a solution

(Si, ti) of (4.2). b1 (s1 , ti) is the surface point on el.

For step (4) of Algorithm 4.2, a computation similar to step (2) of Algorithm 4.2

can be used. Note that the initial tracing direction can be determined easily,

namely the one that is pointing to the inside of the face F1. For tracing plane

curves, the algorithm and implementation of [14] is used.

4.3.2 Intersecting A Projected Surface with Edges of a Cube

The intersections of the projected surface S1 with the edges of a cube B not

only determine the faces that are transversal to S! but also provide a PLA of Sf

within the cube. Let Pi(xi,x 2,x 3 ) = 0 and P2(x,x 2,x 3 ) = 0 be the two face

planes whose intersection contains an edge e of B. A surface point (xI, x 2, x 3) on

e, if there is one, together with its footpoint (x 4, ... ,x) on the basis surface(s)

satisfies the following system of n equations in n variables

f1 (x 1,X 2,.. .,x,) = 0

f2 (X1 1X2, . ,Xn) = 0

(4.3)

f,-2(X,, . ,,) = 0

P1 (X1 .X2 ,X3 ) = 0

P2 (X1,X 2,X 3) = 0

We compute the surface points of Sf on edges of B by applying Newton iteration

to (4.3) using the intersections of 0 1(s, t) with edges of B as initial points. That

is, when 0 1 (sltl) is a point on an edge , of B. D(s1 ,tl) E Rn serves as an

approximation of a zero of (4.3) whose natural projection to (XI, X2, X3)-space. say

p. is the refined point on an edge e1 If B. In short, we say 4 1 (sl, t1 ) on il is refined

to p on el. An approximation ,i . can be refined to a surface point on the

same edge or to a surface point on .,:: ,,-aent eide. Thus. the approximation can

be refined to one point or two poin. t- -. ,x 1, 1 V,1zures 4.4 and 4.5 respectively. In
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Figure 4.4 An approximate point is refined to a surface point

the latter case, an additional transversal face F to S1 is introduced. Moreover. two

approximates 01 (s1 , ti) and 4 1 (s 2 , t 2 ) might be refined to the same surface point-

see Figure 4.6. In this case, the face F is not transversal to Sf. We describe later

how to predict to which edge an approximant is refined. Nevertheless. when an

approximant is refined to an edge e using (4.3), P and P2 are the plane equations

for two faces whose intersection is e.

When an approximate point 1 (sl, ti) is on an edge el of B, it is assumed that

the projected surface S will intersect el or its adjacent edges e2 , e3, e4, e5, and

further subdivision is necessary if this is not the case. When Newton iteration fails

to refine I1(sl, tl) to a point on e,, i = 1,... 5, we subdivide the cube B into eight

equal-sized cubes in order to acquire better approximations. The subdivision will

be discussed in Section 4.3.6.

Algorithm 4.4 accepts as input a cube B. its list of k transversal faces to 4D (s, t).

and the associated intersection points on each face. The list of transversal faces is
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Figure 4.3 An approximate point is refined to two surface points

Fi

Figure 4.6 Two approximate points are refined to one surface point
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in the form

{ [F, < iI , Oi, ti1 )>,< 2 , (S2, 42) >1i = 1... k}

where F is a transversal face, and iij is the edge of B on which Di(sij, t,) lies. for

j = 1,2. The algorithm considers each transversal face F, refines 4,(sil, til) and

D1(si2, ti2) and determines if F is transversal to S!. When the two approximrates

are refined to two different surface points on edges of Fi, the face Fi ;s transversal

to Sf. If the two approximates are refined to the same surface point then F,

is not transversal to Sf and should be excluded. Finally, if the refined point of

'01(sil, til) is different from that of D(s(j-1)2 , t(.-) 2 ) then the face containing the

two refined points is transversal to Sf and should be added to the transversal-face

list of S1 . Note that (DI(sil, til) does not have to be refined if, on the previous face.

<Dl(s(i-1)2, t(i- 1)2 ) is refined to a point lying on e(j-.) 2. If this is not the case. we

see if 4)1(sil, til) can be refined to the edge e of F that is perpendicular to ejj and

e(j- 1)2. If so, the face F containing e and e(j-) 2, rather than Fi, is transversal to

Sf; otherwise D(sai, til) must be refined to e(-l)2 ; see Figure 4.7. Moreover. once

F1I(sil, t,j) is refined to a surface point on an edge of a face F, ¢ 1 (s,2 , t,2) can only

be refined to a point on an edge of F.

We describe the algorithm in pseudo code as follows.

Algorithm 4.4

Input

B: a cube

{ [Fi, < , 1, 4i) >, < 2, (si2, t 2 ) >] I = I.... k}: list of transversal faces

to Pi (s, t) and intersections on edges.

Output

face( B): list of transversal faces to Sj tnd iiltorsoctioms in the form of

f [F.,,< ( eiilpi I),( ei ,(Si I. t, I)) >. < (et22, , ' : ...A 2L. >] i =  . .. l

begin

(1) face( B) = 0:
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4r ID (st ti

e(/-1)2 i- )

Figure 4.7 The refinement of 4DI(s 1 , tit)

(2) i = O;

repeat

(3) + 1:

(4) refine 4$1 (sil, tit) to a point Pit on an edge ei, of B;

(5) refine tl(S 2 , ti 2 ) to a ooint Pi2 on an edge ei2 of B;

until Pit 7- P2

Let F be the face containing ei, and ei2

(6) face(B) = face(B) U { (F, (eil,pil),(il, (si, tit)) >,

< (e2, Pi2), ( i2, (Si2, 4i2)) >1}

7) do while i + I < k begin
(8) i = i+1;

(9) if e(i- 1 )2 = e(i-1)2 or (-q(i-1)2 $ sit and t(i..) 2 i tit)

then begin /* 1(Dsi, t,it) is refined to P(,-1)2 */

10) refine r 1 (Si2 ,t, 2 ) to a point Pj2 on an edge e, 2 of B:

11) face(B) = face(B)u { [F,,< (e(,-t12, p(,-,)2),( ii,(sit, tt)) >.

< ( C,2 -P,2),(, 2t,2 )) >]}
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(12) end

else begin

(13) refine bI0(sai, til) to a point Pil on an edge ei, of B;

(14) ifeil = Fi n F, where F n Fi-1 = e(i-1)2,

then begin /* t(silti1 ) is refined to 2 different points */

(15) face(B) = face(B)u
{[Re,< (e(i-)2, p(i-)2),(e(i-)2, ((i-)2, t(i-)2) ) >,

< (eil,pil),(jil,(sqil,tji)) >] };

(16) refine 1(si 2,t42 ) to a point Pi2 on an edge ei2 of B;

(17) face(B) = face(B)U { [Fi,< (eil,piI),(eil,(si,,tl)) >,
< (ei2, Pi2), (Ri2, (s;2, t,2 )) >]I}

end

else begin

(18) refine 0 1 (si 2 , ti2 ) to a point Pi2 on an edge ei 2 of B;

(19) if Pil Pi2 then begin

(20) let F be the face containing eil and ei 2;

(20) face(B) = face(B) U { (F,< (eil,pil),p(il, (sil, ti)) >.

< (ei2, Pi2),( RQ, (3i2, t,2)) >]I}

end /*then*/

end /*else*/

end /*else*/

end /*do*/

end

4.3.3 Strategies for Stepping

After transversal faces of a cube B have been found, we track the surface Sf by

propagating cubes along transversal edges, taking care that no cube is processed

twice. When considering an adjacent transversal cube B. a surface point (xi. x 2 )

such that xi E B is required for computing the local approximant 4(s.t) from

which DI (s,t) serves as the approximation of S1 inside B. To find such a surface
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point (xi, x 2 ), one possibility is to extend the surface approximant 1'(s, t) of S1

in B to B and locate an appropriate (uo, vo) such that (uo, vo) can be refined to

the desired surface point. Since the local shape of Sf within a cube B is approx-

imated by Dj(s, t), it is clear that the location of x, closely influences the overall

performance of the approximation. Ideally, we expect that x, is approximately

at the center of all surface intersections on edges of B. The approach we take is

to choose (uo, vo) so that (Uo, vo) is the barycenter of (ul,v),. .. , (uk, v) where

'i(UlV V),..., 1(Uk, vk) are intersections of ' 1 (s, t) with edges of B.

Recall that with each transversal face F of B there is an associated record

[F , < ( e,,p i), ( ,, ( si, t )) > .< ( e, i , ( $2, t2) > I

where, for i = 1,2, p, is the intersection of Sf on edge e, of F, pi is refined from

(Dj(si, t,), and E, is the edge of B with which 11(s, t) intersects at Dj(si, ti). When

E, or E2 is not on F, it is clear that I6 is no longer appropriate for the above

computation. In this case, we first compute so = -(si + s2) and to =(t 1 + t 2 )

and refine i(So, to) to a surface point p of S1 on face F and then on p we derive

a new approximant Fi(s, t); see Figure 4.S(a). This computation is also applied

to the case in which (si, ti) = (32, t2); see also Figure 4.8(b). Moreover. for better

approximation of $1(s,t) within B' this computation can generally be applied

when both ej and e2 are edges of the face F. Hence, as an uniform approach for

all cases, we compute such a new approximant 41(s, t) for the transversal face F.

Nevertheless, Newton iteration may fail to refine the computed 4(uo, vo) to a

surface point (xI,x 2) or the iteration succeeds but x, is outside B. When this

happens. the following heuristic approach can be applied:

1. compute so =!(so + uo) and to = L(to + vo).

2. refine 1 (so, to) to a surface point on which a new approximant l(s' t) is

derived.

:3. compute fit,, io).
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B B

< 
P2

(b)

Figure 4.8 Special cases for stepping
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4. refine 1(u0, vo) to a surface point.

5. go to step 1 if the step 4 fails.

4.3.4 Newton Iteration

Newton iteration has been used in this chapter to refine an approximate zero

Po to a true zero p of the system of equations by generating a sequence of points

PI,P, ... - p. Systems (4.2) and (4.3) are a 0-dimensional nonlinear systems

G(x) = 0. where G : R' - R ' for some m. The Newton iteration for solving

such systems is given by

DG(pk)(pk+l - Pk) = -G(pk)

This is a linear system of equations for Pk+i, and if DG(pk) is nonsingular, it can

be solved by general linear solvers.

When refining an approximate to a surface point of F(x) = 0 by Newton

iteration. we solve the following underdeterrnined linear system

Vfi(pk) .A= = -f,(Pk), i = 1,2... n -2 (4.4)

where Ak = Pk+i - Pk and DF(pk) is of dimension (n - 2) x n. Equation (4.4) is

the same as equation (3.12). When DF(pk) has rank n - 2. the general solution is

.k = altl + Ck2 t 2 + 31Vfl(pk) +--" + ,-2Vf,,_2(Pk) (4.5)

where tj and t 2 form a unit vector base of the tangent space of F(x) = 0 at Pk.

If it is wished to make the computation more numerically stable, one may

use singular value decomposition as we have done in Section 3.4. The matrix

(DF(pk))T is factored as (DF(pk))T = U VT, where U = [u.. . u, E R "

and V = vi,.... V,2 E R(n - 2 )x(n - 2) are orthogonal matrices, and E E Rhn,(n - 2)

is a diagonal matrix. Directly substituting the factorization to system (4.4) we

obtain

,Er~r-- P Fpi )
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whose solution can be generally written as

Ak -- 'YIuI + "f2u2 + ""+ 1fnun

where Iy/, .... N-2 are uniquely determined by -/i = (-vTF(pk))/V, and -/n-1

and In,. are arbitrary. For AZ, we assign -,-1 = _y, = 0 so that Ak is in the

normal space of SF at p, since U1, .... u,,- 2 span the same space as the gradients

Vflpk), ..... Vf,- 2(pk). Alternatively, we can compute the QR-factorization of

(DF(pk))T as

(DF(pk)) T =Q[ R ]

where Q is a n x n orthogonal matrix and R is a (n - 2) x (n - 2) nonsingular.

upper triangular matrix. To compute Ak, we

1. solve Rry = -F(pk) for y E R -2 .

2. solve QT A = (y, O)T, i.e., Ak = Q(y, 0 )T.

Notice that the last 2 columns of Q forms an orthogonal basis of the tangent space

of SF at Pk. Thus Ak so computed is a linear combination of the gradients.

4.3.5 Some Error Analyses

A problem of practical and theoretical interest is to estimate the error bound

between the projected surface and its local parametric approximant within a cube

or on cube's edges. The computation of this estimate would depend on error

analyses of both the projection and the approximation. It is not clear now how

to approach the above problem. Instead, we consider the estimation of the error

bound between the local parameterization of the projected surface and the local

parametric approximant within a cube. under the assumption that the neighbor-

hood of convergence of the local parameterization covers the parametric points

inside the cube.
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Recall that the local parametric approximant D(s, t) of Sf consists of the initial

terms of the Taylor series of the local parameterization up to degree 2. Let /i'1(s, t)

denote the local parameterization of S1 . Consider the coordinate functions Oi(s, t)

and zi (s, t) of DI (s, t) and A 1 (s, t) respectively. From the differential calculus.

Oj(s, t) = oi(s, t) + R, ., s, t)

for some 0 < r, < 1, where R(')(r1, s, t) = -i((s, t) Thus

t~'t(s, t) - o,(s. t)I = R 3
)(7ist)j max IR 3) (i, S, t)I

However, z'(s, t) is unknown and hence the above bound cannot be computed.

Consider one exact representation of the error

w,,(, t) - o,(s, t) = Ti'3 (s, t) + R 4
)(7-, S, t)

for 0 < r, < 1, where T!')(s, t) = .((s, t) ( , !))Ji(s, t). With h = I(s, t)JI,

T(3)(s, t) is an O(h4 ) accurate approximation of the error ',(s, t)-6i(s, t). Thus the
vecor(Ta)s.t) T(3)(s t)(3) t)

vector (T(3 )(S -t).- T'(S, 0), T 3 (s, t)) r estimates IP 1(s, t)-(DI(s, t), componentwise.

to within O(h4 ) accuracy, and hence

I' I(s, t) - #i( s, t)l = l(T,3 (s t), T, 31( s. t), T 3)(s, t))rl + O(h4 )

Notice that the coefficients of Ti3)(s. t) can be computed using equation (3.12).

4.3.6 Adaptive Subdivision

The cube size 6 is an input to the PLA algorithm. To determine an appropriate

6 for a given problem a-priori is nontrivial. In practice, we would expect a large

6 initially, and perform adaptive subdivision whenever necessary. There are cases

in which a cube must be subdivided in order to continue the computation. The

cases are as follows.

1. When a parametric approxir: .it ,,-wtrats a face without intersecting any

edge of the face as shown M V -: ' L2.
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q q1

0: edge intersections of the approximant.

q2 . : edge intersections of Sf.
Pi and p2 are refined to p

ql and q2 are refined to q

Figure 4.9 An invalid polygon

2. When Newton iteration fails to refine the intersections of the parametric

approximant with edges of the cube to surface points on edges.

3. When an approximate point is refined to an unexpected surface point and

hence an invalid polygon is produced. e.g., see Figure 4.9.

Like PLA methods that use vertex evaluation, some portions of the surface might

be truncated if we do not subdivide. Two typical examples are

1. The projected surface S! penetrates a face in a closed curve without inter-

secting the boundary edges; see Figure 4.2(a). In this case. both neighboring

cubes sharing that face should be subdivided. This is difficult to detect in

general.

2. Sf intersects only one edge of a face: i.e., S1 intersects an edge of a face

"t t;wo points and has no intersections with others: e.g., see Figure 4.2(b).

Thus all four neighboring cubes along that edge are subdivided for a reliable

polygonization.
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I

Figure 4.10 A crack on the shared face

Subdivision is performed by calling Algorithm 4.1 recursively, with the parent

cube as the domain of interest and with the subcube containing the regular surface

point as the starting cube. Because of size differences, cracks may occur along the

transversal faces of the parent cube. See also Figure 4.10. In order to close such

cracks, a data structure is needed that records topological adjacencies of cubes.

We modify the data structures of Algorithm 4.1 by associating with each parent

cube a list of transversal subcubes, and pointers to neighboring transversal cubes

at the same level. Thus for each cube B we have

< B, (D(s, t), f ace(/3), (pti, pt2, Pt6, Mt4, pts, ptO), ptP, LB > (4.6)

where pt, is a pointer to the parent cube, LB, a list of elements in the form (4.6).

is the list of transversal subcubes of B, and pti is a pointer to the adjacent cube

sharing face F with B. The list L 8 is assigned to the parent cube on the return

from subdivision. The pointers pt, to neighboring transversal cubes are assigned

when such adjacencies are confirmed in step S of Algorithm 4.1. The face(B) is

derived from LB3 if B is subdivided.
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4.3.7 Polygonization and Local Refinement

The PLA of S1 is a polygonal representation given as a list of polygons derived

from those cubes that intersect Sf. A list of transversal cubes lying in a given

domain D is produced by Algorithm 4.1. For each transversal cube, say B, there

is an associated list of transversal faces and surface intersections from which the

polygon approximating Sf within B is formed.

When adaptive subdivision is incorporated into Algorithm 4.1. a transversal

cube B might be recursively subdivided and hence the polygonization processing

is confined to terminal transversal subcubes. As mentioned in Section 4.3.6. the

polygonization scheme must close cracks along the shared face of two transversal

cubes.

Recall that we associated with a face F of a cube C a record of intersection

information in the following form

[F, < (el, pi), ( l,(s,,ti)) >,< (e,2,p2), ( 2, (S2, t2)) >1

When tracing the transversal faces of a cube C in order to form a polygon over

C. we check on each transversal face F to see if the adjacent cube C has been

subdivided. If C is subdivided, possibly more than once, we trace the surface-edge

intersections on face F of C starting from P, on el. If the faces of a cube are

numbered consistently, this computation can be achieved efficiently by processing

the faces of the same number on the subcubes of LC that share F with C. Note

that when C is a subcube of B while C is not. C can be located by following the

parent pointers and the pointers to the neighboring cubes.

Once a polygon is formed, it is desirable to refine locally the polygon according

to some criterion provided by the user. e.g.. the maximum deviation of vertex

normals from the normal of p = 1 (0,0). 1.,! ' he polygon P be the list of vertices

(PP2, . p ], for some k. and let V, be ti,, iormal of Sf at pi, i 1 k.

Also let V be the unit normal at p. As i .:i 17'. "'h,, maximum deviation of
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vertex normals from the normal of the p can be estimated by

max (,Ni. N)I<i<k

When the maximum deviation exceeds some tolerance, polygon P is replaced by

triangles [P, Pi, Pi+i] for i = 1.... ,k- 1. and each of the triangles is refined ac-

cordingly. Note that on the refinement of triangles, the midpoint of the triangle is

refined to a surface point by Newton iteration.

Surface normal computations are also needed when shading the surface to pro-

duce an image. For computing the normals of the projected surface S1 directly

from F(x) = 0. see Section 3.1.1. Notice that the coordinates of the polygon ver-

tices in R ' are stored in order to do the refinement and compute surface normals.
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5. CONCLUSIONS AND FUTURE WORK

5.1 Local Implicit Approximations of Curves and Surfaces

We have presented a method for computing a local implicit approximation

of parametric curves and surfaces. The method works for both polynomially and

rationally parameterized curves and surfaces, and achieves an order of contact that

can be prescribed. In the case of nonsingular curve points, the approximant must

be irreducibl., but in the surface case additional safeguards have been incorporated

into the algorithm to ensure irreducibility. The method also yields meaningful

results for many types of singularity. The algorithm is capable of determining the

exact implicit form without extraneous factors when the approximant is formulated

with the exact degree of the implicit form.

The method provides a middle ground between two major approaches for eval-

uating the intersection curve of two parametric surfaces, that is, subdivision and

substitution methods. It is well known that subdivision methods are robust and

can locate all intersection branches, but at the expense of creating a large vol-

ume of data, while the substitution method provides an exact representation of

the intersection with the help of often expensive implicitization techniques. In

the context of subdivision methods, our implicit approximations have the poten-

tial of reducing the number of generated surface approximants since we are not

restricted to only planar approximants. In the context of substitution methods.

the approximations avoid the high cost of implicitization. In both cases a number

of practical issues remain open for exploration, including the trade-off between

the degree of the approximant and the accuracy with which the curve or surface

has been approximated. In particular. a comparative evaluation of our method is
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desirable that contrasts its performance with other surface intersection methods,

such as the one based on subdivision.

5.2 Local Approximations of 2-Surfaces

We have demonstrated that certain surfaces, including offsets, blends and

Voronoi surfaces, can be formulated as the projection, into 3-space, of 2-surfaces

F(x) = 0 in R ' . For such surfaces, we have proposed several computation schemes

that (1) describe the local geometry, including computations of normal vectors.

tangent vectors, and normal curvatures, of the projected surface, and (2) derive

degree two local implicit, local explicit and local parametric approximations of

the projected surface. We believe that these methods will be of practical interest

in rendering 2-surfaces in high-dimensional space and computing surface/surface

intersection.

In computing the degree two implicit approximation of the projected surface, an

8 x 10 linear system is obtained, which leaves us two degrees of freedom. Problems

of practical and theoretical interest include describing the set of approximants

parameterized by the two degrees of freedom and deriving criteria from which to

determine a member of the family of approximants to select.

Several other problems are of interest, for example. computing the Gaussian

and mean curvatures of the projected surface at a point directly from F(x) = 0

without variable elimination, and computing parametric approximations of the

projected surface at singular surface points.

5.3 Piecewise Approximations of 2-Surfaces

The ability to derive a piecewise linear approximation (PLA) of a 2-surface

defined implicitly in R" should be essential in the interactive design environment

since the PLA allows one to take advantage of hardware capabilities and reduces

the cost of expensive ray tracing in the rendering process.
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We have presented an algorithm that computes the PLA of a 2-surface defined

by a system of nonlinear equations in n variables, where n > 3, but whose natural

projection to 3-space is the surface of interest. This is an algorithm that deals

with a 2-surface in R ', but performs all major computations in 3-space. Hence its

performance on computing the PLA of complex surfaces, including offsets, blends.

and Voronoi surfaces, is much more efficient than methods that work in n-space.

A number of issues await future research. Our algorithm takes as input a cube

of a prescribed size containing a given point on the (projected) surface. One might

ask how one should determine the cube size. In the process of the algorithm, a

degree two parametric approximant is derived to approximate the projected surface

within the cube and its intersections with the cube's edges serve as initial points

to be refined to the intersections of the projected surface with edges of the cube.

Moreover, cube subdivision can be easily applied when necessary and due to the

availability of the parametric approximant the local refinement within a polygon

can be efficiently performed. Thus, we would expect a large cube size initially,

followed by adaptive subdivision. An ideal cube size would balance local geometry

and global geometry such that only a small number of cube subdivisions are needed.

Such trade-offs remain an important problem to be explored in greater depth.

Locating a seed point on the projected surface is in general difficult especially

for blends and Voronoi surfaces. Space decomposition is useful for surfaces in R3 .

but seems expensive for 2-surfaces in R' where n is large. It remains an urgent

challenge for PLA algorithm based on continuation methods.

An efficient and reliable way to estimate stepping into an adjacent transversal

cube is crucial to the performance of our algorithm. Although we have given

a heuristic approach that is based on the local parametric approximant. a more

quantitative method would be desirable that accounts for the local geometry of

the projected surface.
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